首页> 外文会议>Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019 >Incentivizing Large-scale Vehicular Crowdsensing System For Smart City Applications
【24h】

Incentivizing Large-scale Vehicular Crowdsensing System For Smart City Applications

机译:激励面向智慧城市应用的大型车辆拥挤系统

获取原文
获取原文并翻译 | 示例

摘要

Mobile crowd sensing (MCS) enables many smart city applications (e.g., transportation monitoring/management,environmental monitoring, etc.). Recently, MCS systems built on non-dedicated vehicular platforms like taxishave become popular due to their large-scale coverage and low-cost deployment and maintenance. However,the goal of MCS may be inconsistent with the goal of vehicles. For example, MCS expects to get large andbalanced sensing coverage over the city, while the taxis gather in busy areas to search for new ride requests. Thisinconsistency between the goals of MCS and vehicles results in a low sensing coverage and decreases the qualityof the collected information.To address this inconsistency and optimize the sensing coverage, this paper presents an incentivizing systemto optimize the sensing coverage of the sampled data. Key challenges to resolving this inconsistency includelimited budget constraining the ability to incentivize more vehicles and complicate vehicle and trajectory selec-tion problem making it diu000ecult to obtain the incentivizing strategy. To address these challenges, we design acustomized incentive by combining monetary incentives and potential ride request at the destination to reducethe cost of incentivizing vehicles and utilize the budget eu000eciently. Meanwhile, we formulate the problem of incen-tivizing trajectory planning as a non-linear multiple-choice knapsack problem, and propose a heuristic algorithmto approximate the optimal incentivizing strategy. The experiments based on the real-world data show that oursystem achieves up to 26.99% improvement in the sensing coverage compared to benchmark methods.
机译:移动人群感应(MCS)支持许多智能城市应用(例如,交通监控/管理,\ r \环境监控等)。近来,基于诸如出租车之类的非专用车辆平台的MCS系统因其覆盖范围广,部署和维护成本低而受到欢迎。但是,MCS的目标可能与车辆的目标不一致。例如,MCS希望在整个城市范围内获得较大且不平衡的感应范围,而出租车则聚集在繁忙的地区以寻找新的乘车要求。 \ MCS目标与车辆之间的这种不一致会导致感应覆盖率降低,并降低所收集信息的质量。\ r \ n为了解决这种不一致并优化感应覆盖率,本文提出了一种激励系统\ r \ n优化采样数据的感应范围。解决此矛盾的主要挑战包括:有限的预算限制了激励更多车辆的能力,并使车辆和轨迹选择问题复杂化,从而使其难以获得激励策略。为了应对这些挑战,我们通过组合货币奖励和目的地的潜在乘车要求来设计定制奖励,以减少激励车辆的成本并有效利用预算。同时,将激励规划问题公式化为非线性多项选择背包问题,并提出了一种启发式算法来逼近最优激励策略。根据实际数据进行的实验表明,与基准方法相比,我们的系统在感应覆盖率方面可提高26.99%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号