首页> 外文会议>Amity International Conference on Artificial Intelligence >Fault Tolerance Based Indexing for Multidimensional Data Bases
【24h】

Fault Tolerance Based Indexing for Multidimensional Data Bases

机译:基于容错的多维数据库索引

获取原文

摘要

Multidimensional databases are main source dataset for data analytics. They are designed to provide fast and efficient backend support. Efficient physical layer design of these data bases is foremost requirement. Efficiency of any storage system depends on the indexing system, which is measured in terms of time and space complexity of the indexing system. In this paper new dimension of accuracy is proposed which along with time and space which will be measure of efficiency for indexing system at physical level of multidimensional data base. Fault Tolerance capability of self-organizing neural network is used for mapping data at conceptual level to physical storage level. Results of the research are very exciting and can be used for further development of the similar techniques.
机译:多维数据库是数据分析的主要来源数据集。它们旨在提供快速有效的后端支持。这些数据库的高效物理层设计是最重要的要求。任何存储系统的效率都取决于索引系统,该索引系统是根据索引系统的时间和空间复杂性来衡量的。本文提出了一种新的精度维度,它随着时间和空间的变化而成为衡量多维数据库物理层索引系统效率的标准。自组织神经网络的容错能力用于将概念级别的数据映射到物理存储级别。研究结果非常令人兴奋,可以用于进一步发展类似技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号