首页> 外文期刊>Distributed and Parallel Databases >M-Grid: a distributed framework for multidimensional indexing and querying of location based data
【24h】

M-Grid: a distributed framework for multidimensional indexing and querying of location based data

机译:M-Grid:用于基于位置的数据的多维索引和查询的分布式框架

获取原文
获取原文并翻译 | 示例

摘要

The widespread use of mobile devices and the real time availability of user-location information is facilitating the development of newpersonalized, location-based applications and services (LBSs). Such applications require multi-attribute query processing, scalability for supporting millions of users, real-time querying capability and analyzing large volumes of data. Cloud computing aided a new generation of distributed databases commonly known as key-value stores. Key-value stores were designed to extract values from very large volumes of data while being highly available, fault-tolerant and scalable, hence providing much needed infrastructure to support LBSs. However, complex queries over multidimensional data cannot be processed efficiently as they do not provide means to access multiple attributes. In this paper, we present M-Grid, a unifying indexing and a data distribution framework which enables key-value stores to support multidimensional queries. We organize a set of nodes in a modified P-Grid overlay network which provides efficient data distribution, fault-tolerance and query processing over multidimensional data. To index, we use Hilbert Space Filling Curve based linearization technique which preserves the data locality to efficiently manage multidimensional data in a key-value store. We propose algorithms to dynamically process range and k nearest neighbor (kNN) queries on linearized values. This removes the overhead of maintaining a separate index table. Our approach is completely independent from the underlying storage layer and can be implemented on any cloud infrastructure. Our experiments on Amazon EC2 show that M-Grid achieves a performance improvement of three orders of magnitude in comparison to MapReduce and four times to that of MD-HBase scheme.
机译:移动设备的广泛使用和用户位置信息的实时可用性正在促进新的个性化基于位置的应用程序和服务(LBS)的开发。此类应用程序需要多属性查询处理,可支持数百万用户的可伸缩性,实时查询功能以及分析大量数据。云计算辅助了新一代的分布式数据库,通常称为键值存储。键值存储旨在从大量数据中提取值,同时具有高可用性,容错性和可伸缩性,因此提供了支持LBS的急需的基础架构。但是,由于无法提供对多个属性的访问方式,因此无法有效处理多维数据上的复杂查询。在本文中,我们介绍了M-Grid,统一索引和数据分发框架,该框架使键值存储可以支持多维查询。我们在经过修改的P-Grid覆盖网络中组织了一组节点,该网络提供了有效的数据分发,容错和对多维数据的查询处理。为了建立索引,我们使用基于希尔伯特空间填充曲线的线性化技术,该技术可保留数据局部性,从而有效地管理键值存储中的多维数据。我们提出了用于动态处理线性化值的范围和k个最近邻(kNN)查询的算法。这消除了维护单独索引表的开销。我们的方法完全独立于底层存储层,并且可以在任何云基础架构上实施。我们在Amazon EC2上的实验表明,与MapReduce相比,M-Grid的性能提高了三个数量级,而与MD-HBase方案相比则提高了四倍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号