首页> 外文会议>American Control Conference, 2009. ACC '09 >Low-complexity model predictive control of electromagnetic actuators with a stability guarantee
【24h】

Low-complexity model predictive control of electromagnetic actuators with a stability guarantee

机译:具有稳定性保证的电磁致动器的低复杂度模型预测控制

获取原文

摘要

Electromagnetically driven mechanical systems are characterized by fast nonlinear dynamics that are subject to physical and control constraints, which makes controller design a challenging problem. This paper presents a novel model predictive control (MPC) scheme that can handle both the performance/physical constraints and the strict limits on computational complexity required in control of general electromagnetic (EM) actuators. The novel aspects of the MPC design are a one-step-ahead prediction horizon and an infinity-norm artificial Lyapunov function that is employed to drive the system to a desired reference. An additional optimization variable is introduced to relax the conditions on the Lyapunov function, which is not forced to decrease monotonically. In this way feasibility of the MPC algorithm is improved considerably. While the MPC scheme uses a full nonlinear model, which improves performance, we show that the resulting MPC problem can still be transformed into a low-complexity linear program that can be solved by modern microprocessors within tenths of milliseconds. Moreover, an even simpler piecewise affine explicit controller can be obtained via multiparametric programming. Simulation results are reported and compared with the results achieved by state-of-the-art explicit MPC based on a piecewise affine model.
机译:电磁驱动的机械系统的特征在于快速的非线性动力学,该动力学受物理和控制约束,这使得控制器设计成为一个具有挑战性的问题。本文提出了一种新颖的模型预测控制(MPC)方案,该方案可以处理性能/物理约束以及对控制通用电磁(EM)致动器所需的计算复杂性的严格限制。 MPC设计的新颖之处在于一步一步的预测范围和无限范数人工Lyapunov函数,该函数用于将系统驱动至所需参考。引入了一个附加的优化变量以放宽Lyapunov函数上的条件,该函数不会被强制单调减小。以此方式,MPC算法的可行性大大提高。虽然MPC方案使用完整的非线性模型来提高性能,但我们证明,由此产生的MPC问题仍可以转换为低复杂度的线性程序,现代微处理器可以在十分之几毫秒的时间内解决该问题。此外,可以通过多参数编程获得更简单的分段仿射显式控制器。报告了仿真结果,并将其与基于分段仿射模型的最先进的显式MPC所获得的结果进行了比较。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号