首页> 外文会议>Alternative lithographic technologies II >Lossless Compression Algorithm for REBL Direct-Write E-Beam Lithography System
【24h】

Lossless Compression Algorithm for REBL Direct-Write E-Beam Lithography System

机译:REBL直写式电子束光刻系统的无损压缩算法

获取原文
获取原文并翻译 | 示例

摘要

Future lithography systems must produce microchips with smaller feature sizes, while maintaining throughputs comparable to those of today's optical lithography systems. This places stringent constraints on the effective data throughput of any maskless lithography system. In recent years, we have developed a datapath architecture for direct-write lithography systems, and have shown that compression plays a key role in reducing throughput requirements of such systems. Our approach integrates a low complexity hardware-based decoder with the writers, in order to decompress a compressed data layer in real time on the fly. In doing so, we have developed a spectrum of lossless compression algorithms for integrated circuit layout data to provide a tradeoff between compression efficiency and hardware complexity, the latest of which is Block Golomb Context Copy Coding (Block GC3).rnIn this paper, we present a modified version of Block GC3 called Block RGC3, specifically tailored to the REBL direct-write E-beam lithography system. Two characteristic features of the REBL system are a rotary stage resulting in arbitrarily-rotated layout imagery, and E-beam corrections prior to writing the data, both of which present significant challenges to lossless compression algorithms. Together, these effects reduce the effectiveness of both the copy and predict compression methods within Block GC3.rnSimilar to Block GC3, our newly proposed technique Block RGC3, divides the image into a grid of two-dimensional "blocks" of pixels, each of which copies from a specified location in a history buffer of recently-decoded pixels. However, in Block RGC3 the number of possible copy locations is significantly increased, so as to allow repetition to be discovered along any angle of orientation, rather than horizontal or vertical. Also, by copying smaller groups of pixels at a time, repetition in layout patterns is easier to find and take advantage of. As a side effect, this increases the total number of copy locations to transmit; this is combated with an extra region-growing step, which enforces spatial coherence among neighboring copy locations, thereby improving compression efficiency.rnWe characterize the performance of Block RGC3 in terms of compression efficiency and encoding complexity on a number of rotated Metal 1, Poly, and Via layouts at various angles, and show that Block RGC3 provides higher compression efficiency than existing lossless compression algorithms, including JPEG-LS, ZIP, BZIP2, and Block GC3.
机译:未来的光刻系统必须生产出具有较小特征尺寸的微芯片,同时保持与当今的光学光刻系统相当的吞吐量。这对任何无掩模光刻系统的有效数据吞吐量都施加了严格的约束。近年来,我们已经开发了用于直接写光刻系统的数据路径体系结构,并显示出压缩在降低此类系统的吞吐量要求方面起着关键作用。我们的方法将低复杂度的基于硬件的解码器与编写器集成在一起,以便实时实时解压缩压缩的数据层。为此,我们针对集成电路布图数据开发了一系列无损压缩算法,以在压缩效率和硬件复杂度之间进行权衡,其中最新的是Block Golomb Context Copy Coding(Block GC3).rn在本文中,我们介绍了改进版的Block GC3,称为Block RGC3,专门针对REBL直写电子束光刻系统定制。 REBL系统的两个特征是旋转平台,可产生任意旋转的布局图像,以及在写入数据之前进行电子束校正,这两项都对无损压缩算法提出了重大挑战。这些效果加在一起会降低Block GC3中复制和预测压缩方法的效果。rn与Block GC3类似,我们新提出的技术Block RGC3将图像划分为二维的像素二维“块”网格,每个像素从最近解码的像素的历史记录缓冲区中的指定位置复制。但是,在RGC3块中,可能的复制位置数量大大增加,以便可以沿任何方向的角度发现重复,而不是水平或垂直。而且,通过一次复制较小的像素组,更容易发现和利用布局图案的重复。副作用是,这增加了要传输的副本位置的总数;这是通过额外的区域增长步骤来解决的,该步骤可增强相邻副本位置之间的空间连贯性,从而提高压缩效率。我们在压缩效率和编码复杂度方面对许多旋转的Metal 1,Poly,和Via布局以不同的角度显示,与现有的无损压缩算法(包括JPEG-LS,ZIP,BZIP2和Block GC3)相比,Block RGC3提供了更高的压缩效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号