首页> 外文会议>Alternative lithographic technologies II >Biomolecular Architectures and Systems for Nanoscience Engineering
【24h】

Biomolecular Architectures and Systems for Nanoscience Engineering

机译:纳米科学工程的生物分子架构和系统

获取原文
获取原文并翻译 | 示例

摘要

Despite the great potential of nanomaterials in electronic and photonic applications, their incorporation into functional devices will require the combination of top-down lithographic large-area patterning with the high resolution and chemical precision afforded by bottom-up self-assembly. Despite the wealth of existing lithography techniques, there remain significant hurdles to addressing below the 20nm regime. In light of these challenges, there have been significant efforts to use "bottom-up" or self-assembly approaches for patterning. One key, "manufacturable" approach has been to merge self-assembling systems with substrates patterned using conventional lithographic techniques. This paper will show our recent efforts in directing the placement of single stranded DNA and DNA templates on several different substrates that have been patterned by lithography. A variety of substrates have been generated by optical and e-beam lithography and these have been used to produce highly parallel arrays of mesoscale DNA scaffolds and DNA oligonucleotides in a single step. Furthermore, these DNA templates encode multiple nanometer recognition sites that can be further used to generate hierarchical assemblies of both organic and inorganic nanoscale materials. Because a significant challenge of future nanotechnology is the ability to address sub-20nm features, these self-assembled DNA arrays are being explored as potential templates for the assembly and wiring of nanoscale materials for both logic and memory.
机译:尽管纳米材料在电子和光子应用中具有巨大的潜力,但将它们结合到功能器件中将需要结合自上而下的光刻大面积图案以及自下而上的自组装所提供的高分辨率和化学精度。尽管现有的光刻技术非常丰富,但要解决20nm以下制程仍存在重大障碍。鉴于这些挑战,已经进行了很大的努力来使用“自下而上”或自组装方法进行构图。一种关键的“可制造的”方法是将自组装系统与使用常规光刻技术构图的基板合并。本文将展示我们最近在引导单链DNA和DNA模板在已通过光刻技术进行图案化的几种不同基材上的放置方面的最新努力。通过光学和电子束光刻已经产生了多种底物,这些底物已被用于在单个步骤中产生高度平行的中尺度DNA支架和DNA寡核苷酸阵列。此外,这些DNA模板编码多个纳米识别位点,这些位点可进一步用于生成有机和无机纳米级材料的分层组装。由于未来纳米技术面临的重大挑战是解决20nm以下特征的能力,因此这些自组装DNA阵列正在被探索为组装和布线用于逻辑和存储器的纳米级材料的潜在模板。

著录项

  • 来源
    《Alternative lithographic technologies II》|2010年|P.763710.1-763710.8|共8页
  • 会议地点 San Jose CA(US)
  • 作者单位

    Department of Nanoengineering and Materials Science and Engineering, 9500 Gilman Drive, UC San Diego, La Jolla, CA USA 92093-0448;

    rnDepartment of Nanoengineering and Materials Science and Engineering, 9500 Gilman Drive, UC San Diego, La Jolla, CA USA 92093-0448;

    rnDepartment of Nanoengineering and Materials Science and Engineering, 9500 Gilman Drive, UC San Diego, La Jolla, CA USA 92093-0448;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 微电子学、集成电路(IC);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号