首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI pt.2 >An Algorithm for Fully Constrained Abundance Estimation in Hyperspectral Unmixing
【24h】

An Algorithm for Fully Constrained Abundance Estimation in Hyperspectral Unmixing

机译:高光谱解混中完全约束丰度估计的算法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents an algorithm for abundance estimation in hyperspectral imagery. The fully constrained abundance estimation problem where the positivity and the sum to less than or equal to one (or sum equal to one) constraints are enforced is solved by reformulating the problem as a least distance (LSD) least squares (LS) problem. The advantage of reformulating the problem as a least distance problem is that the resulting LSD problem can be solved using a duality theory using a nonnegative LS problem (NNLS). The NNLS problem can then be solved using Hanson and Lawson algorithm or one of several multiplicative iterative algorithms presented in the literature. The paper presents the derivation of the algorithm and a comparison to other approaches described in the literature. Application to HYPERION image taken over La Parguera, Puerto Rico is presented.
机译:本文提出了一种高光谱图像中的丰度估计算法。通过将问题重构为最小距离(LSD)最小二乘(LS)问题,可以解决完全约束的丰度估计问题,在该问题中强制执行正数和小于或等于一(或等于一)的和。将问题重新格式化为最小距离问题的优点是,可以使用使用非负LS问题(NNLS)的对偶理论来解决所得的LSD问题。然后可以使用Hanson和Lawson算法或文献中提出的几种乘法迭代算法之一来解决NNLS问题。本文介绍了该算法的推导以及与文献中描述的其他方法的比较。介绍了在波多黎各La P​​arguera拍摄的HYPERION图像中的应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号