首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI pt.1 >Stepwise Simplex Projection Method for Selection of Endmembers in Hyperspectral Images
【24h】

Stepwise Simplex Projection Method for Selection of Endmembers in Hyperspectral Images

机译:选择高光谱图像端成员的逐步单纯形投影方法

获取原文
获取原文并翻译 | 示例

摘要

In previous research, we introduced a family of simplex projection methods for selection of endmembers in hyperspectral images. In this paper, we define a new member of that family, which we call the Stepwise Simplex Projection (SSP) method. This new method adds and eliminates endmembers based on their distances to simplexes defined by previously chosen endmembers. We compare the SSP method to a previously defined simplex projection method (called the Farthest Pixel Selection method) and to some other methods such as the Pixel Purity Index and Maximum Distance methods. To this end, we introduce several summary measures to describe how well a set of endmembers characterizes the image spectra. We also investigate how well the resulting sets of endmembers perform in subpixel target detection. The numerical results are based on AVIRIS hyperspectral imagery. The SSP method proves to be the most consistently well performing among the investigated methods.
机译:在先前的研究中,我们介绍了一系列用于选择高光谱图像端成员的单纯形投影方法。在本文中,我们定义了该族的一个新成员,我们将其称为逐步单纯形投影(SSP)方法。这种新方法根据末端成员到先前选择的末端成员定义的单纯形的距离来添加和删除末端成员。我们将SSP方法与先前定义的单纯形投影方法(称为最远像素选择方法)以及其他一些方法(例如,像素纯度指数和最大距离方法)进行了比较。为此,我们引入了几种总结性措施来描述一组末端成员对图像光谱的表征程度。我们还研究了最终成员集在子像素目标检测中的性能如何。数值结果基于AVIRIS高光谱图像。在所研究的方法中,SSP方法被证明是性能最稳定的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号