首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XI pt.1 >Matched filter stochastic background characterization for hyperspectral target detection
【24h】

Matched filter stochastic background characterization for hyperspectral target detection

机译:用于高光谱目标检测的匹配滤波器随机背景特征

获取原文
获取原文并翻译 | 示例

摘要

Algorithms exploiting hyperspectral imagery for target detection have continually evolved to provide improved detection results. Adaptive matched filters can be used to locate spectral targets by modeling scene background as either structured (geometric) with a set of endmembers (basis vectors) or as unstructured (stochastic) with a covariance or correlation matrix. These matrices are often calculated using all available pixels in a data set. In unstructured background research, various techniques for improving upon scene-wide methods have been developed, each involving either the removal of target signatures from the background model or the segmentation of image data into spatial or spectral subsets. Each of these methods increase the detection signal-to-background ratio (SBR) and the multivariate normality (MVN) of the data from which background statistics are calculated, thus increasing separation between target and non-target species in the detection statistic and ultimately improving thresholded target detection results. Such techniques for improved background characterization are widely practiced but not well documented or compared. This paper provides a review and comparison of methods in target exclusion, spatial subsetting and spectral prc-clustering, and introduces a new technique which combines these methods. The analysis provides insight into the merit of employing unstructured background characterization techniques, as well as limitations for their practical application.
机译:利用高光谱图像进行目标检测的算法不断发展,以提供改进的检测结果。自适应匹配滤波器可用于通过将场景背景建模为具有一组端成员(基本向量)的结构化(几何)或具有协方差或相关矩阵的非结构化(随机)来定位光谱目标。通常使用数据集中的所有可用像素来计算这些矩阵。在非结构化的背景研究中,已经开发了多种用于改善场景范围方法的技术,每种技术都涉及从背景模型中去除目标特征或将图像数据分割为空间或光谱子集。这些方法中的每一个都增加了计算背景统计数据的数据的检测信噪比(SBR)和多元正态性(MVN),从而增加了检测统计中目标物种与非目标物种之间的距离,并最终改善了阈值目标检测结果。这种用于改善背景特征的技术已被广泛实践,但是没有得到很好的记录或比较。本文对目标排除,空间子集和光谱聚类中的方法进行了综述和比较,并介绍了一种结合了这些方法的新技术。该分析提供了对使用非结构化背景表征技术的优点的见解,以及它们在实际应用中的局限性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号