首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXIII >On the creation of high spatial resolution imaging spectroscopy data from multi-temporal low spatial resolution imagery
【24h】

On the creation of high spatial resolution imaging spectroscopy data from multi-temporal low spatial resolution imagery

机译:从多时间低空间分辨率影像创建高空间分辨率影像光谱数据

获取原文
获取原文并翻译 | 示例

摘要

The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel size of x/r, can be reconstructed from the multi-temporal set. The algorithm was applied to data from NASA's classic Airborne Visible and Infrared Imaging Spectrometer (AVIRIS-C; GSD 18m), collected between 2013-2015 (summer and fall) over our study area (NEON's Southwest Pacific Domain; Fresno, CA) to generate higher spatial resolution imagery (GSD 9m). The reconstructed data set was validated via comparison to NEON's imaging spectrometer (NIS) data (GSD 1m). The results showed that algorithm worked well with the AVIRIS-C data and could be applied to the HyspIRI data.
机译:高光谱红外成像仪(HyspIRI)任务旨在提供全球成像光谱数据,特别是对生态系统研究有利。车载光谱仪将从可见光到短波红外(VSWIR)区域(400-2500 nm)收集辐射光谱。该任务要求具有良好的光谱分辨率(10 nm带宽),因此将使科学家能够进行材料表征,物种分类甚至亚像素映射。但是,全球覆盖范围要求导致相对较低的空间分辨率(GSD 30m),这将应用程序限制为类似比例的对象。因此,在过去的研究中,我们专注于通过光谱数据评估亚像素植被结构。在这项研究中,我们通过融合多时相数据集来研究开发或重建更高空间分辨率的成像光谱数据,以解决低空间分辨率图像中隐含的缺点。 HyspIRI VSWIR仪器的预计时间分辨率为15天,这意味着在整个生长季节中,我们可以访问某个区域的多达六个数据集。先前的研究表明,温带森林的某些植被结构参数,例如叶面积指数(LAI)和生态系统总产量(GEP)在夏季和冬季相对恒定;因此,我们认为夏季收集的数据集来自相似,稳定的森林结构。融合之前的第一步涉及多时间数据的注册。然后可以将数据融合算法应用于预处理的数据集。该方法取决于已广泛用于融合RGB图像的算法。理想情况下,如果我们有一个场景的四个图像都满足以下要求-i)使用相同的相机配置捕获它们; ii)每个图像的像素大小为x; iii)至少将r2图像排列在x / r的网格上-然后可以从多时间集重建像素大小为x / r的高分辨率图像。该算法已应用于我们研究区域(NEON的西南太平洋区域;加利福尼亚州弗雷斯诺)2013年至2015年(夏季和秋季)之间从NASA经典的机载可见和红外成像光谱仪(AVIRIS-C; GSD 18m)收集的数据,以生成更高空间分辨率的图像(GSD 9m)。通过与NEON的成像光谱仪(NIS)数据(GSD 1m)进行比较,验证了重建的数据集。结果表明,该算法与AVIRIS-C数据效果很好,可以应用于HyspIRI数据。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号