首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII >Use of High Dimensional Model Representation in Dimensionality Reduction: Application to Hyperspectral Image Classification
【24h】

Use of High Dimensional Model Representation in Dimensionality Reduction: Application to Hyperspectral Image Classification

机译:高维模型表示在降维中的应用:在高光谱图像分类中的应用

获取原文
获取原文并翻译 | 示例

摘要

Recently, information extraction from hyperspectral images (HI) has become an attractive research area for many practical applications in earth observation due to the fact that HI provides valuable information with a huge number of spectral bands. In order to process such a huge amount of data in an effective way, traditional methods may not fully provide a satisfactory performance because they do not mostly consider high dimensionality of the data which causes curse of dimensionality also known as Hughes phenomena. In case of supervised classification, a poor generalization performance is achieved as a consequence resulting in availability of limited training samples. Therefore, advance methods accounting for the high dimensionality need to be developed in order to get a good generalization capability. In this work, a method of High Dimensional Model Representation (HDMR) was utilized for dimensionality reduction, and a novel feature selection method was introduced based on global sensitivity analysis. Several implementations were conducted with hyperspectral images in comparison to state-of-art feature selection algorithms in terms of classification accuracy, and the results showed that the proposed method outperforms the other feature selection methods even with all considered classifiers, that are support vector machines, Bayes, and decision tree j48.
机译:近来,由于HI提供了具有大量光谱带的有价值的信息的事实,因此从高光谱图像(HI)中提取信息已成为在地球观测中许多实际应用中有吸引力的研究领域。为了以有效的方式处理如此大量的数据,传统方法可能无法完全提供令人满意的性能,因为它们通常不考虑导致维数诅咒的数据的高维数,这也被称为休斯现象。在监督分类的情况下,结果导致较差的泛化性能,导致可获得有限的训练样本。因此,需要开发考虑高维的先进方法以获得良好的泛化能力。在这项工作中,高维模型表示(HDMR)方法被用于降维,并基于全局灵敏度分析引入了一种新颖的特征选择方法。在分类精度方面,与最新的特征选择算法相比,使用高光谱图像进行了几种实现,结果表明,即使使用所有考虑的分类器(即支持向量机),该方法也优于其他特征选择方法。贝叶斯和决策树j48。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号