首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XXII >Towards an improved understanding of the influence of subpixel vegetation structure on pixel-level spectra: a simulation approach
【24h】

Towards an improved understanding of the influence of subpixel vegetation structure on pixel-level spectra: a simulation approach

机译:为了更好地了解亚像素植被结构对像素级光谱的影响:一种模拟方法

获取原文
获取原文并翻译 | 示例

摘要

The planned NASA Hyperspectral Infrared Imager (HyspIRI) mission, equipped with an imaging spectrometer that has the capability of monitoring ecosystems globally, will provide an unprecedented opportunity to address scientific challenges related to ecosystem function and change. However, uncertainty remains around the impact of subpixel vegetation structure, in combination with the point spread function, on pixel-level imaging spectroscopy data. We estimated structural parameters, e.g., leaf area index (LAI), canopy cover, and tree location, from HyspIRI spectral data, with the goal of assessing how subpixel variation in these parameters impact pixel-level imaging spectroscopy data. The fine-scale variability of real vegetation structure makes this a challenging endeavor. Therefore, we utilized a simulation-based approach to counter the time-consuming and often destructive sampling needs of vegetation structural analysis and to simultaneously generate synthetic HyspIRI data pre-launch. Three virtual scenes were constructed, corresponding to the actual vegetation structure in the National Ecological Observatory Network's (NEON) Pacific Southwest Domain (Fresno, CA). These included an oak savanna, a dense coniferous forest, and a conifer-manzanita-mixed forest. Simulated spectroscopy data for these scenes were then generated using the Digital Imaging and Remote Sensing Image Generation (DIRSIG) model. Simulations first were used to verify the physical model, virtual scene geometrical information, and simulation parameters. This was followed by simulations of HyspIRI data, where within-pixel structural variability was introduced, e.g., by iteratively changing per-pixel canopy cover and tree placement, tree clustering, leaf area index (LAI), etc., between simulation runs for the virtual scenes. Finally, narrow-band vegetation indices (Vis) were extracted from the data in an attempt to describe the variability of the subpixel structural parameters; this was done in order to assess VI robustness to changes in structural "levels", as well as placement of trees/canopies within the instrument's instantaneous field-of-view (IFOV). Our ultimate goal is not only to better understand how such subpixel variability influence imaging spectroscopy outputs, but also to better estimate vegetation structural parameters using spectra. We constructed regression models for LAI (R~2 = 0.92) and canopy cover (R~2 = 0.97) with narrow-band Vis via this simulation approach. Our models ultimately are intended to improve the HyspIRI mission's ability to monitor global vegetation structure.
机译:计划中的NASA高光谱红外成像仪(HyspIRI)任务配备了具有在全球范围内监视生态系统功能的成像光谱仪,将为应对与生态系统功能和变化有关的科学挑战提供前所未有的机会。但是,与点扩散函数结合使用的子像素植被结构对像素级成像光谱数据的影响仍存在不确定性。我们从HyspIRI光谱数据中估算了结构参数,例如叶面积指数(LAI),树冠覆盖和树木位置,目的是评估这些参数中的子像素变化如何影响像素级成像光谱数据。真实植被结构的细微变化使这项工作具有挑战性。因此,我们采用了基于仿真的方法来应对植被结构分析中耗时且经常具有破坏性的采样需求,并同时在启动前生成合成的HyspIRI数据。根据国家生态天文台网(NEON)太平洋西南区域(加利福尼亚州弗雷斯诺)的实际植被结构,构建了三个虚拟场景。其中包括橡树大草原,茂密的针叶林和针叶树-manzanita混交林。然后使用数字成像和遥感图像生成(DIRSIG)模型生成这些场景的模拟光谱数据。首先使用仿真来验证物理模型,虚拟场景几何信息和仿真参数。接下来是HyspIRI数据的模拟,其中引入了像素内的结构变异性,例如,通过在每个像素的模拟运行之间迭代地更改每个像素的树冠覆盖和树的位置,树木聚类,叶面积指数(LAI)等。虚拟场景。最后,从数据中提取出窄带植被指数(Vis),以描述亚像素结构参数的可变性。这样做是为了评估VI对结构“水平”变化的稳健性,以及在仪器瞬时视场(IFOV)内树木/树冠的放置。我们的最终目标不仅是要更好地了解这种亚像素的可变性如何影响成像光谱输出,而且还要利用光谱更好地估算植被结构参数。通过这种模拟方法,我们构建了具有窄带可见光的LAI(R〜2 = 0.92)和冠层覆盖(R〜2 = 0.97)的回归模型。我们的模型最终旨在提高HyspIRI任务监测全球植被结构的能力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号