首页> 外文会议>Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XVII >The target implant method for predicting target difficulty and detector performance in hyperspectral imagery
【24h】

The target implant method for predicting target difficulty and detector performance in hyperspectral imagery

机译:用于预测高光谱图像中目标难度和探测器性能的目标植入方法

获取原文
获取原文并翻译 | 示例

摘要

The utility of a hyperspectral image for target detection can be measured by synthetically implanting target spectra in the image and applying detection algorithms.1 In this paper we apply this method, called the target implant method, for the purpose of determining the top performing algorithms for a given image and given target and for determining the relative difficulty for detection of targets in a given image with a given detector. Our tests include variations on the matched filter, adaptive coherence/cosine estimator and constrained energy minimization detection algorithms. This enables one to predict the fill fraction at which a given target can be detected and the best detection algorithm in a given image under ideal circumstances. Comparison of predictions from this method to detection performance on real target pixels shows that the target implant method does provide accurate relative predictions in terms of both target difficulty and detector performance, but reliably predicting the actual number of false alarms for a given target at a given fill fraction is difficult or impossible. In our tests we used images from the Cooke City Collection2,3 and from the Forest Radiance Collection.4 The Cooke City Collection was taken with the HyMap sensor on July 4, 2006. This imagery has 126 bands ranging from 453.8 to 2496.3 nm at a ground sample distance of approximately 3 meters. Seven flightlines were collected, six of which contain 4 fabric target panels and 3 vehicles with known spectra. The Forest Radiance imagery had 210 spectral bands (145 good bands) ranging from 397.4nm to 2496.5 with a ground sample distance of approximately 1.9 meters
机译:可通过将目标光谱合成注入图像并应用检测算法来测量高光谱图像用于目标检测的效用。1在本文中,我们将这种称为目标注入方法的方法应用于确定性能最佳的算法。给定图像和给定目标,以及确定使用给定检测器在给定图像中检测目标的相对难度。我们的测试包括匹配滤波器的变化,自适应相干/余弦估计器和受约束的能量最小化检测算法。这使人们能够预测在理想情况下可以检测到给定目标的填充率以及给定图像中的最佳检测算法。从此方法到实际目标像素检测性能的预测比较表明,目标植入方法确实在目标难度和检测器性能方面均提供了准确的相对预测,但可以可靠地预测给定目标在给定条件下的实际误报数填充分数很难或不可能。在我们的测试中,我们使用了来自Cooke City Collection2,3和Forest Radiance Collection的图像。4Cooke City Collection是使用HyMap传感器于2006年7月4日拍摄的。该图像在126个波段上的反射带范围从453.8到2496.3 nm。地面样本距离约为3米。收集了七个飞行路线,其中六个包含4个织物目标面板和3个具有已知光谱的飞行器。 Forest Radiance影像具有210个光谱带(145个良好带),光谱带范围从397.4nm到2496.5,地面采样距离约为1.9米

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号