首页> 外文会议>Algorithms and technologies for multispectral, hyperspectral, and ultraspectral imagery XV >Enhanced Detection and Visualization of Anomalies in Spectral Imagery
【24h】

Enhanced Detection and Visualization of Anomalies in Spectral Imagery

机译:光谱图像中异常的增强检测和可视化

获取原文
获取原文并翻译 | 示例

摘要

Anomaly detection algorithms applied to hyperspectral imagery are able to reliably identify man-made objects from a natural environment based on statistical/geometric likely hood. The process is more robust than target identification, which requires precise prior knowledge of the object of interest, but has an inherently higher false alarm rate. Standard anomaly detection algorithms measure deviation of pixel spectra from a parametric model (either statistical or linear mixing) estimating the image background. The topological anomaly detector (TAD) creates a fully non-parametric, graph theory-based, topological model of the image background and measures deviation from this background using codensity. In this paper we present a large-scale comparative test of TAD against 80+ targets in four full HYDICE images using the entire canonical target set for generation of ROC curves. TAD will be compared against several statistics-based detectors including local RX and subspace RX.rnEven a perfect anomaly detection algorithm would have a high practical false alarm rate in most scenes simply because the user/analyst is not interested in every anomalous object. To assist the analyst in identifying and sorting objects of interest, we investigate coloring of the anomalies with principle components projections using statistics computed from the anomalies. This gives a very useful colorization of anomalies in which objects of similar material tend to have the same color, enabling an analyst to quickly sort and identify anomalies of highest interest.
机译:应用于高光谱图像的异常检测算法能够基于统计/几何可能罩从自然环境中可靠地识别出人造物体。该过程比目标识别更鲁棒,目标识别需要目标对象具有精确的先验知识,但固有地具有较高的误报率。标准的异常检测算法测量像素光谱与估计图像背景的参数模型(统计或线性混合)之间的偏差。拓扑异常检测器(TAD)创建一个基于图形理论的完全非参数的拓扑,用于图像背景,并使用可编码度测量与该背景的偏差。在本文中,我们使用完整的标准目标集生成ROC曲线,在四个完整的HYDICE图像中针对80多个目标进行了TAD的大规模比较测试。将TAD与包括本地RX和子空间RX在内的几种基于统计信息的检测器进行比较。即使在大多数场景中,完美的异常检测算法也将具有很高的实际误报率,这仅仅是因为用户/分析人员对每个异常对象都不感兴趣。为了帮助分析人员识别和分类感兴趣的对象,我们使用从异常中计算出的统计数据,使用主成分投影调查异常的着色。这为异常提供了非常有用的着色,在这种着色中,相似材料的对象往往具有相同的颜色,从而使分析人员能够快速分类和识别最受关注的异常。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号