【24h】

Anomaly Detection in Hyperspectral Imagery: A Comparison of Methods Using Seasonal Data

机译:高光谱图像中的异常检测:使用季节性数据的方法的比较

获取原文
获取原文并翻译 | 示例

摘要

The use of hyperspectral imaging (HIS) technology to support a variety of civilian, commercial, and military remote sensing applications, is growing. The rich spectral information present in HIS allows for more accurate ground cover identification and classification than with panchromatic or multispectral imagery. One class of problems where hyperspectral images can be exploited, even when no a priori information about a particular ground cover class is available, is anomaly detection. Here spectral outliers (anomalies) are detected based on how well each hyperpixel (spectral irradiance vector for a given pixel position) fits within some background statistical model. Spectral anomalies may correspond to areas of interest in a given scene. In this work, we compare several anomaly detectors found in the literature in novel experiments. In particular, we study the performance of the anomaly detectors in detecting several man-made painted panels in a natural background using visibleear-infrared hyperspectral imagery. The data have been collected over the course of a nine month period, allowing us to test the robustness of the anomaly detectors with seasonal change. The detectors considered include the simple Gaussian anomaly detector, a Gaussian mixture model (GMM) anomaly detector, and the cluster-based anomaly detector (CBAD). We examine the effect of the number of components for the GMM and the number of clusters for the CBAD. Our preliminary results suggest that the use of a CBAD yields the best results for our data.
机译:使用高光谱成像(HIS)技术来支持各种民用,商业和军事遥感应用的趋势正在增长。与全色或多光谱图像相比,HIS中存在的丰富光谱信息可实现更准确的地面覆盖识别和分类。即使没有关于特定地面覆盖类别的先验信息可用,也可以利用高光谱图像的一类问题是异常检测。在此,基于每个超像素(给定像素位置的光谱辐照度矢量)在某个背景统计模型内的拟合程度来检测光谱异常值(异常)。光谱异常可能对应于给定场景中的关注区域。在这项工作中,我们在新颖的实验中比较了文献中发现的几种异常检测器。尤其是,我们研究了使用可见/近红外高光谱图像在自然背景下检测几种人造油漆面板时异常检测器的性能。数据是在9个月的时间内收集的,这使我们能够测试异常检测器随季节变化的稳健性。考虑的检测器包括简单的高斯异常检测器,高斯混合模型(GMM)异常检测器和基于簇的异常检测器(CBAD)。我们检查了GMM的组件数量和CBAD的群集数量的影响。我们的初步结果表明,使用CBAD可以为我们的数据带来最佳结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号