首页> 外文会议>Algorithms and Technologies for Multispectral, Hyperspectral, and Ultraspectral Imagery XIV >Statistical Methods for Analysis of Hyperspectral Anomaly Detectors
【24h】

Statistical Methods for Analysis of Hyperspectral Anomaly Detectors

机译:分析高光谱异常探测器的统计方法

获取原文
获取原文并翻译 | 示例

摘要

Most hyperspectral (HS) anomaly detectors in the literature have been evaluated using a few HS imagery sets to estimate the well-known ROC curve. Although this evaluation approach can be helpful in assessing detectors' rates of correct detection and false alarm on a limited dataset, it does not shed lights on reasons for these detectors' strengths and weaknesses using a significantly larger sample size. This paper discusses a more rigorous approach to testing and comparing HS anomaly detectors, and it is intended to serve as a guide for such a task. Using randomly generated samples, the approach introduces hypothesis tests for two idealized homogeneous sample experiments, where model parameters can vary the difficulty level of these tests. These simulation experiments are devised to address a more generalized concern, i.e., the expected degradation of correct detection as a function of increasing noise in the alternative hypothesis.
机译:文献中大多数高光谱(HS)异常检测器已使用少数HS影像集进行了评估,以估算众所周知的ROC曲线。尽管此评估方法可帮助评估有限数据集上检测器的正确检测和误报率,但使用大量样本时,并不能说明这些检测器的优缺点。本文讨论了一种测试和比较HS异常检测器的更为严格的方法,旨在为此类任务提供指导。使用随机生成的样本,该方法为两个理想的均质样本实验引入了假设检验,其中模型参数可以改变这些检验的难度。设计这些模拟实验以解决更普遍的问题,即,在替代假设中,正确检测的预期降级与噪声的增加有关。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号