首页> 外文会议>Algorithms for synthetic aperture radar imagery XVIII >Joint sparse representation based automatic target recognition in SAR images
【24h】

Joint sparse representation based automatic target recognition in SAR images

机译:SAR图像中基于联合稀疏表示的自动目标识别

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we introduce a novel joint sparse representation based automatic target recognition (ATR) method using multiple views, which can not only handle multi-view ATR without knowing the pose but also has the advantage of exploiting the correlations among the multiple views for a single joint recognition decision. We cast the problem as a multi-variate regression model and recover the sparse representations for the multiple views simultaneously. The recognition is accomplished via classifying the target to the class which gives the minimum total reconstruction error accumulated across all the views. Extensive experiments have been carried out on Moving and Stationary Target Acquisition and Recognition (MSTAR) public database to evaluate the proposed method compared with several state-of-the-art methods such as linear Support Vector Machine (SVM), kernel SVM as well as a sparse representation based classifier. Experimental results demonstrate that the effectiveness as well as robustness of the proposed joint sparse representation ATR method.
机译:在本文中,我们介绍了一种新颖的基于多视图的基于联合稀疏表示的自动目标识别(ATR)方法,该方法不仅可以在不知道姿势的情况下处理多视图ATR,而且具有利用多视图之间的相关性来进行识别的优点。一个共同的认可决定。我们将该问题转换为多元回归模型,并同时恢复多个视图的稀疏表示。识别是通过将目标分类到类中来完成的,该类给出了在所有视图上累积的最小总重构误差。在移动和固定目标获取与识别(MSTAR)公共数据库上进行了广泛的实验,与几种最新的方法(例如线性支持向量机(SVM),内核SVM和一个基于稀疏表示的分类器。实验结果表明,所提出的联合稀疏表示ATR方法的有效性和鲁棒性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号