首页> 外文会议>Algorithms in bioinformatics. >Improved Lower Bounds on the Compatibility of Quartets, Triplets, and Multi-state Characters
【24h】

Improved Lower Bounds on the Compatibility of Quartets, Triplets, and Multi-state Characters

机译:改善了四重奏,三重奏和多状态字符的兼容性的下界

获取原文
获取原文并翻译 | 示例

摘要

We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function f(r) such that, for any set C of r-state characters, C is compatible if and only if every subset of f(r) characters of C is compatible. We show that for every r ≥ 2, there exists an incompatible set C of [r/2] ·[r/2] + 1 r-state characters such that every proper subset of C is compatible. Thus, f(r) ≥ [r/2] · [r/2] + 1 for every r ≥ 2. This improves the previous lower bound of f(r) > r given by Meacham (1983), and generalizes the construction showing that f(4) ≥ 5 given by Habib and To (2011). We prove our result via a result on quartet compatibility that may be of independent interest: For every integer n ≥4, there exists an incompatible set Q of [(n-2)/2] · [(n-2)/2] + 1 quartets over n labels such that every proper subset of Q is compatible. We contrast this with a result on the compatibility of triplets: For every n ≥ 3, if R is an incompatible set of more than n-1 triplets over n labels, then some proper subset of R is incompatible. We show this bound is tight by exhibiting, for every n ≥ 3, a set of n-1 triplets over n taxa such that R is incompatible, but every proper subset of R is compatible.
机译:我们研究了关于多状态字符兼容的必要和充分条件下的长期猜想:存在一个函数f(r),使得对于任何一组R状态字符C,当且仅当每个C的f(r)个字符的子集是兼容的。我们显示出,对于每个r≥2,都存在一个不相容的集合C,其中[r / 2]·[r / 2] + 1个r状态字符使得C的每个适当子集都是兼容的。因此,对于每个r≥2,f(r)≥[r / 2]·[r / 2] +1。这改善了Meacham(1983)给出的f(r)> r的先前下界,并推广了结构显示Habib和To(2011)给出的f(4)≥5。我们通过四元组兼容性的结果来证明我们的结果,该结果可能具有独立的意义:对于每个n≥4的整数,存在[[n-2)/ 2]·[(n-2)/ 2]的不兼容集Q n个标签上有1个四重奏,因此Q的每个适当子集都是兼容的。我们将其与三元组兼容性的结果进行对比:对于每n≥3,如果R是在n个标签上超过n-1个三元组的不兼容集,则R的某些适当子集是不兼容的。我们通过在n个分类单元上每n≥3展示一组n-1个三元组,从而使R不兼容,但R的每个适当子集都兼容,从而表明该边界是紧密的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号