首页> 外文会议>Algorithms - ESA 2011 >A Nearly Optimal Algorithm for Finding L_1 Shortest Paths among Polygonal Obstacles in the Plane
【24h】

A Nearly Optimal Algorithm for Finding L_1 Shortest Paths among Polygonal Obstacles in the Plane

机译:在平面中多边形障碍物之间寻找L_1最短路径的近乎最佳算法

获取原文
获取原文并翻译 | 示例

摘要

Given a set of h pairwise disjoint polygonal obstacles of totally n vertices in the plane, we study the problem of computing an L_1 (or rectilinear) shortest path between two points avoiding the obstacles. Previously, this problem has been solved in O(n log n) time and O(n) space, or alternatively in O(n + hlog~(1.5)n) time and O(n + hlog~(1.5) h) space. A lower bound of Ω(n + h log h) time and Ω(n) space can be established for this problem. In this paper, we present a nearly optimal algorithm of O(n + hlog~(1+∈) h) time and O(n) space for the problem, where ∈ > 0 is an arbitrarily small constant. Specifically, after the free space is triangulated in O(n + hlog~(1+∈) h) time, our algorithm finds a shortest path in O(n + hlogh) time and O(n) space. Our algorithm can also be extended to obtain improved results for other related problems, e.g., finding shortest paths with fixed orientations, finding approximate Euclidean shortest paths, etc. In addition, our techniques yield improved results on some shortest path query problems.
机译:给定平面中总共n个顶点的一组h对不相交的多边形障碍,我们研究了计算两点之间的L_1(或直线)最短路径来避免障碍的问题。以前,此问题已在O(n log n)时间和O(n)空间中解决,或者在O(n + hlog〜(1.5)n)时间和O(n + hlog〜(1.5)h)空间中解决了。可以为这个问题确定Ω(n + h log h)时间和Ω(n)空间的下界。在本文中,我们提出了O(n + hlog〜(1 +∈)h)时间和O(n)空间用于问题的近似最佳算法,其中∈> 0是任意小的常数。具体来说,在O(n + hlog〜(1 +∈)h)时间对自由空间进行三角剖分后,我们的算法找到了O(n + hlogh)时间和O(n)空间中的最短路径。我们的算法也可以扩展以获得其他相关问题的改进结果,例如,找到具有固定方向的最短路径,找到近似的欧几里得最短路径等。此外,我们的技术在某些最短路径查询问题上也产生了改进的结果。

著录项

  • 来源
    《Algorithms - ESA 2011》|2011年|p.481-492|共12页
  • 会议地点 Saarbrucken(DE);Saarbrucken(DE)
  • 作者

    Danny Z. Chen; Haitao Wang;

  • 作者单位

    Department of Computer Science and Engineering University of Notre Dame, Notre Dame, IN 46556, USA;

    Department of Computer Science and Engineering University of Notre Dame, Notre Dame, IN 46556, USA;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号