首页> 外文期刊>Algorithmica >Computing L_1 Shortest Paths Among Polygonal Obstacles in the Plane
【24h】

Computing L_1 Shortest Paths Among Polygonal Obstacles in the Plane

机译:计算平面中多边形障碍物中的L_1最短路径

获取原文

摘要

Given a point s and a set of h pairwise disjoint polygonal obstacles with a total of n vertices in the plane, suppose a triangulation of the space outside the obstacles is given; we present an O(n+hlogh) time and O(n) space algorithm for building a data structure (called shortest path map) of size O(n) such that for any query point t, the length of an L1 shortest obstacle-avoiding path from s to t can be computed in O(logn) time and the actual path can be reported in additional time proportional to the number of edges of the path. The previously best algorithm computes such a shortest path map in O(nlogn) time and O(n) space. So our algorithm is faster when h is relatively small. Further, our techniques can be extended to obtain improved results for other related problems, e.g., computing the L1 geodesic Voronoi diagram for a set of point sites among the obstacles.
机译:给定点S和一组H成对不相交的多边形障碍物,在平面中总共n个顶点,假设给出了障碍物外部的空间的三角测量;我们介绍了用于构建大小O(n)的数据结构(称为最短路径映射)的O(n + hlogh)时间和O(n)空间算法,使得对于任何查询点t,L1最短障碍的长度 - 可以在O(LOGN)时间中计算来自S到T的路径,并且可以在与路径的边缘的数量成比例的额外时间中报告实际路径。先前最佳算法计算O(NLogn)时间和O(n)空间中的这种最短路径映射。因此,当H相对较小时,我们的算法更快。此外,可以扩展我们的技术以获得其他相关问题的改进的结果,例如,计算L1测地Voronoi图,用于障碍物之间的一组点位点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号