首页> 外文会议>Algorithms and data structures >Piecewise-Linear Approximations of Uncertain Functions
【24h】

Piecewise-Linear Approximations of Uncertain Functions

机译:不确定函数的分段线性逼近

获取原文
获取原文并翻译 | 示例

摘要

We study the problem of approximating a function F : R → R by a piecewise-linear function F when the values of F at {x_1,…,x_n} are given by a discrete probability distribution. Thus, for each x_I, we are given a discrete set y_I,1, …,yi,mi of possible function values with associated probabilities pi,j such that Pr[F(xi) = yi,j] = pi,j. We define the error of F as error(F,F) = max_I=1 E[|F(xi) - F(xi)]. Let m = Σ_I~n=1mi be the total number of potential values over all F(xj). We obtain the following two results: (Ⅰ) an O(m) algorithm that, given F and a maximum error e, computes a function F with the minimum number of links such that error(F,F) ≤ ε; (Ⅱ) an O(n~(4/3+δ) +mlog n) algorithm that, given F, an integer value 1 ≤ k ≤ n and any δ > 0, computes a function F of at most k links that minimizes error(F,F).
机译:我们研究了当{x_1,…,x_n}处的F值由离散概率分布给出时,通过分段线性函数F逼近函数F:R→R的问题。因此,对于每个x_I,我们给与可能的函数值的离散集y_I,1,…,yi,mi关联概率pi,j,使得Pr [F(xi)= yi,j] = pi,j。我们将F的误差定义为error(F,F)= max_I / n = 1 E [| F(xi)-F(xi)]。令m =Σ_I〜n = 1mi是整个F(xj)上的潜在值总数。我们得到以下两个结果:(Ⅰ)O(m)算法,给定F和最大误差e,计算具有最小链接数的函数F,使得error(F,F)≤ε; (Ⅱ)O(n〜(4/3 +δ)+ mlog n)算法,在给定F的情况下,整数值1≤k≤n且任何δ> 0,计算出最多k个链接的函数F错误(F,F)。

著录项

  • 来源
    《Algorithms and data structures》|2011年|p.1-12|共12页
  • 会议地点 New York NY(US);New York NY(US)
  • 作者单位

    Department of Computer Engineering, Sharif University of Technology, Tehran, Iran;

    Department of Mathematics and Computing Science, TU Eindhoven, Eindhoven, The Netherlands;

    Department of Mathematics and Computing Science, TU Eindhoven, Eindhoven, The Netherlands;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号