首页> 外文会议>Algorithms and computation >Fast Distributed Approximation Algorithm for the Maximum Matching Problem in Bounded Arboricity Graphs
【24h】

Fast Distributed Approximation Algorithm for the Maximum Matching Problem in Bounded Arboricity Graphs

机译:有界树图最大匹配问题的快速分布式近似算法

获取原文
获取原文并翻译 | 示例

摘要

We give a deterministic distributed approximation algorithm for the maximum matching problem in graphs of bounded arboricity. Specifically, given 0 < ∈ < 1 and a positive integer a, the algorithm finds a matching of size at least (1 - ∈)m(G), where m(G) is the size of the maximum matching in an n-vertex graph G with arboricity at most a. The algorithm runs in O(log~* n) rounds in the message passing model and it is the first sublogarithmic algorithm for the problem on such a wide class of graphs. Moreover, the result implies that the known Ω((log n/log log n)~(1/2)) lower bound on the time complexity for a constant or polylogarithmic approximation does not hold for graphs of bounded arboricity.
机译:针对有界树图的最大匹配问题,我们给出了确定性分布近似算法。具体来说,给定0 <∈<1和正整数a,该算法找到大小至少为(1-ε)m(G)的匹配项,其中m(G)是n顶点中最大匹配项的大小图G的树状度最多为a。该算法在消息传递模型中以O(log〜* n)轮次运行,它是在如此广泛的图上针对该问题的第一个对数算法。此外,该结果暗示对于常数或多对数逼近的时间复杂度的已知Ω((log n / log log n)〜(1/2))下界不适用于有界的稀疏度图。

著录项

  • 来源
    《Algorithms and computation》|2009年|P.668-678|共11页
  • 会议地点 HonoluluHI(US);HonoluluHI(US)
  • 作者单位

    School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85287-1804, USA;

    rnFaculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland;

    Faculty of Mathematics and Computer Science, Adam Mickiewicz University, Poznan, Poland;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 计算技术、计算机技术;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号