首页> 外文会议>Algorithms and Computation; Lecture Notes in Computer Science; 4288 >Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner's Contraction
【24h】

Algorithmic Graph Minor Theory: Improved Grid Minor Bounds and Wagner's Contraction

机译:算法图次要理论:改进的网格次要边界和Wagner的收缩

获取原文
获取原文并翻译 | 示例

摘要

We explore the three main avenues of research still unsolved in the algorithmic graph-minor theory literature, which all stem from a key min-max relation between the treewidth of a graph and its largest grid minor. This min-max relation is a keystone of the Graph Minor Theory of Robertson and Seymour, which ultimately proves Wagner's Conjecture about the structure of minor-closed graph properties. First, we obtain the only known polynomial min-max relation for graphs that do not exclude any fixed minor, namely, map graphs and power graphs. Second, we obtain explicit (and improved) bounds on the min-max relation for an important class of graphs excluding a minor, namely, K_(3,k)-minor-free graphs, using new techniques that do not rely on Graph Minor Theory. These two avenues lead to faster fixed-parameter algorithms for two families of graph problems, called minor-bidimensional and contraction-bidimensional parameters. Third, we disprove a variation of Wagner's Conjecture for the case of graph contractions in general graphs, and in a sense characterize which graphs satisfy the variation. This result demonstrates the limitations of a general theory of algorithms for the family of contraction-closed problems (which includes, for example, the celebrated dominating-set problem). If this conjecture had been true, we would have had an extremely powerful tool for proving the existence of efficient algorithms for any contraction-closed problem, like we do for minor-closed problems via Graph Minor Theory.
机译:我们探索了算法图次要理论文献中仍未解决的三个主要研究途径,它们均源于图的树宽与其最大网格次要关系之间的关键最小-最大关系。这个最小-最大关系是罗伯逊和西摩的图次要理论的基石,该理论最终证明了瓦格纳关于次闭合图性质的结构的猜想。首先,我们获得不排除任何固定次要图的唯一已知的多项式最小-最大关系,即映射图和幂图。其次,我们使用不依赖于Graph Minor的新技术,为不包括次要图的重要图类(即K_(3,k)-minor-free-图)获得了重要图类的min-max关系的显式(改进)边界。理论。这两种途径导致了针对两类图形问题的更快的固定参数算法,称为次二维和收缩二维参数。第三,对于一般图中的图收缩情况,我们反对Wagner猜想的变化,并且从某种意义上说,表征哪些图满足变化。该结果证明了一般算法理论对于收缩封闭问题(包括例如著名的控制集问题)的局限性。如果这个猜想是正确的,那么我们将拥有一个非常强大的工具来证明任何紧闭问题的有效算法的存在,就像我们通过图小理论对小封闭问题所做的那样。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号