首页> 外文会议>Algorithms and architectures for parallel processing >Scalable Network Intrusion Detection and Countermeasure Selection in Virtual Network Systems
【24h】

Scalable Network Intrusion Detection and Countermeasure Selection in Virtual Network Systems

机译:虚拟网络系统中的可扩展网络入侵检测和对策选择

获取原文
获取原文并翻译 | 示例

摘要

Security of virtual network systems, such as Cloud computing systems, is important to users and administrators. One of the major issues with Cloud security is detecting intrusions to provide time-efficient and cost-effective countermeasures. Cyber-attacks involve series of exploiting vulnerabilities in virtual machines, which could potentially cause a loss of credentials and disrupt services (e.g., privilege escalation attacks). Intrusion detection and countermeasure selection mechanisms are proposed to address the aforementioned issues, but existing solutions with traditional security models (e.g., Attack Graphs (AG)) do not scale well with a large number of hosts in the Cloud systems. Consequently, the model cannot provide a security solution in practical time. To address this problem, we incorporate a scalable security model named Hierarchical Attack Representation Model (HARM) in place of the AG to improve the scalability. By doing so, we can provide a security solution within a reasonable timeframe to mitigate cyber attacks. Further, we show the equivalent security analysis using the HARM and the AG, as well as to demonstrate how to transform the existing AG to the HARM.
机译:虚拟网络系统(例如云计算系统)的安全性对于用户和管理员而言很重要。云安全性的主要问题之一是检测入侵,以提供节省时间和成本效益的对策。网络攻击涉及虚拟机中的一系列利用漏洞,这可能会导致凭据丢失并破坏服务(例如特权升级攻击)。提出了入侵检测和对策选择机制来解决上述问题,但是具有传统安全模型(例如,攻击图(AG))的现有解决方案无法很好地扩展云系统中的大量主机。因此,该模型无法在实际时间内提供安全解决方案。为了解决此问题,我们引入了可扩展的安全模型,称为“分层攻击表示模型”(HARM),以代替AG,以提高可扩展性。这样,我们可以在合理的时间内提供安全解决方案,以减轻网络攻击。此外,我们展示了使用HARM和AG的等效安全性分析,并演示了如何将现有AG转换为HARM。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号