首页> 外文会议>Algorithmic number theory >Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension Field
【24h】

Decomposition Attack for the Jacobian of a Hyperelliptic Curve over an Extension Field

机译:扩展域上超椭圆曲线Jacobian的分解攻击。

获取原文
获取原文并翻译 | 示例

摘要

We propose some kind of new attack which gives the solution of the discrete logarithm problem for the Jacobian of a curve defined over an extension field F_(q~n), considering the set of the union of factor basis and large primes B_o given by points of the curve whose x-coordinates lie in F_q. In this attack, an element of the divisor group which is written by a sum of some elements of factor basis and large primes is called (potentially) decomposed and the set of the factors that appear in the sum, is called decomposed factors. So, it will be called decomposition attack. In order to analyze the running of the decomposition attack, a test for the (potential) decomposedness and the computation of the decomposed factors are needed. Here, we show that the test to determine if an element of the Jacobian (i.e., reduced divisor) is written by an ng sum of the elements of the decomposed factors and the computation of decomposed factors are reduced to the problem of solving some multivariable polynomial system of equations by using the Riemann-Roch theorem. In particular, in the case of hyperelliptic curves of genus g, we construct a concrete system of equations, which satisfies these properties and consists of (n~2 - n)g quadratic equations. Moreover, in the case of (g,n) = (1,3), (2,2) and (3,2), we give examples of the concrete computation of the decomposed factors by using the computer algebra system Magma.
机译:我们提出了一种新的攻击方法,该方法考虑了由点给定的因子基和大素数B_o的并集,给出了扩展字段F_(q〜n)上定义的曲线的雅可比行列的离散对数问题的解决方案x坐标位于F_q中的曲线的角度。在这种攻击中,除数组的一个元素(由因子基和大质数的一些元素之和构成)被称为(潜在)分解,并且总和中出现的因子集称为分解因子。因此,这称为分解攻击。为了分析分解攻击的运行,需要测试(潜在)分解和分解因子的计算。在这里,我们展示了确定是否由分解因子的元素的ng和写出Jacobian元素(即约数除数)的测试,并且分解因子的计算被简化为求解某些多元多项式的问题使用黎曼-罗奇定理的方程组。特别是对于属g的超椭圆曲线,我们构建了一个满足这些性质并由(n〜2-n)g个二次方程组成的具体方程组。此外,在(g,n)=(1,3),(2,2)和(3,2)的情况下,我们给出了使用计算机代数系统Magma对分解因子进行具体计算的示例。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号