首页> 外文会议>Algorithm theory - SWAT 2010 >Bin Packing with Fixed Number of Bins Revisited
【24h】

Bin Packing with Fixed Number of Bins Revisited

机译:重访固定数量垃圾箱的垃圾箱包装

获取原文
获取原文并翻译 | 示例

摘要

As Bin Packing is NP-hard already for k = 2 bins, it is unlikely to be solvable in polynomial time even if the number of bins is a fixed constant. However, if the sizes of the items are polynomially bounded integers, then the problem can be solved in time n°(k) for an input of length n by dynamic programming. We show, by proving the W[l]-hardness of Unary Bin Packing (where the sizes are given in unary encoding), that this running time cannot be improved to f{k) . n0(1) for any function f(k) (under standard complexity assumptions). On the other hand, we provide an algorithm for Bin Packing that obtains in time 2°(k log~2 k^ +O(n) a solution with additive error at most 1, i.e., either finds a packing into k + 1 bins or decides that k bins do not suffice.
机译:由于对于k = 2个bin,Bin Packing已经是NP硬性的,因此即使bins的数量是固定的常数,也不太可能在多项式时间内求解。但是,如果项的大小是多项式有界整数,则可以通过动态编程在长度为n的输入中在时间n°(k)中解决问题。通过证明一元bin Packing的W [l]硬度(以一元编码给出大小),我们证明了该运行时间无法提高到f {k)。任何函数f(k)的n0(1)(在标准复杂性假设下)。另一方面,我们提供了一种用于装箱的算法,该算法可以在2°(k log〜2 k ^ + O(n)的时间中获得最大加法误差为1的解决方案,即找到一个装箱到k + 1个装箱中的包装或确定k个垃圾箱不足。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号