首页> 外文会议>AI 2006: Advances in Artificial Intelligence; Lecture Notes in Artificial Intelligence; 4304 >A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding
【24h】

A Hybrid Genetic Algorithm for 2D FCC Hydrophobic-Hydrophilic Lattice Model to Predict Protein Folding

机译:二维FCC疏水-亲水格子模型的混合遗传算法预测蛋白质折叠

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a Hybrid Genetic Algorithm (HGA) for the protein folding prediction (PFP) applications using the 2D face-centred-cube (FCC) Hydrophobic-Hydrophilic (HP) lattice model. This approach enhances the optimal core formation concept and develops effective and efficient strategies to implement generalized short pull moves to embed highly probable short motifs or building blocks and hence forms the hybridized GA for FCC model. Building blocks containing Hydrophobic (H) - Hydrophilic (P or Polar) covalent bonds are utilized such a way as to help form a core that maximizes the Ifitnessl. The HGA helps overcome the ineffective crossover and mutation operations that traditionally lead to the stuck condition, especially when the core becomes compact. PFP has been strategically translated into a multi-objective optimization problem and implemented using a swing function, with the HGA providing improved performance in the 2D FCC model compared with the Simple GA.
机译:本文提出了一种混合遗传算法(HGA),用于使用二维面心立方(FCC)疏水-亲水(HP)晶格模型的蛋白质折叠预测(PFP)应用。这种方法增强了最佳岩心形成概念,并开发了有效且高效的策略来实施广义的短拉动作,以嵌入高度可能的短图案或构件,从而形成用于FCC模型的杂交GA。包含疏水性(H)-亲水性(P或极性)共价键的构建基块可以帮助形成最大化Ifitnessl的核心。 HGA有助于克服传统上导致卡住状态的无效交叉和变异操作,尤其是在核心变得紧凑时。 PFP已从策略上转换为多目标优化问题,并使用摆动函数来实现,与简单GA相比,HGA在2D FCC模型中提供了改进的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号