首页> 外文会议>Agent and multi-agent systems : Technologies and applications >Distributed Data Reduction through Agent Collaboration
【24h】

Distributed Data Reduction through Agent Collaboration

机译:通过座席协作减少分布式数据

获取原文
获取原文并翻译 | 示例

摘要

Distributed data mining (DDM) is an important research area. One of the approaches suitable for the DDM is to select relevant local patterns from the distributed databases. Such patterns, often called prototypes, are subsequently merged to create a compact representation of the distributed data repositories. In the paper the local prototype selection is carried out independently at each site where instances and features are selected simultaneously by teams of agents. To assure obtaining homogenous prototypes the feature selection requires collaboration of agents. In the paper two agent collaboration strategies producing a common set of features are proposed and experimentally validated. The paper includes a detailed description of the proposed approach and a discussion of the computational experiment results.
机译:分布式数据挖掘(DDM)是重要的研究领域。适用于DDM的方法之一是从分布式数据库中选择相关的本地模式。随后将这种模式(通常称为原型)合并,以创建分布式数据存储库的紧凑表示形式。在本文中,本地原型选择是在每个站点独立进行的,代理团队同时选择了实例和功能。为了确保获得同质的原型,功能选择需要代理的协作。在本文中,提出了两种产生共同特征的代理协作策略,并进行了实验验证。该论文包括对所提出的方法的详细描述和对计算实验结果的讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号