首页> 外文会议>Advances in systems theory, signal processing and computation science >A Study on Moving Object Tracking Algorithm Using SURF Algorithm and Depth Information
【24h】

A Study on Moving Object Tracking Algorithm Using SURF Algorithm and Depth Information

机译:基于SURF算法和深度信息的运动目标跟踪算法研究

获取原文
获取原文并翻译 | 示例

摘要

This paper is a study on real-time object tracking algorithm using depth information of the Kinect and fast speeded up robust feature(SURF) algorithm. Depth information of the Kinect is used to overcome the disadvantage which continuously adaptive meanshift(Camshift) and Meanshift have of illumination and noise. Because processing time of SURF algorithm is faster than that of scale invariant feature transform(SIFT), Interest point detection of SURF algorithm is used for real-time processing. In this paper, depth information using background modeling and SURF algorithm generates interest point detection, interest point detection can create search window and we present object tracking method using Camshift and interest point detection.The experimental results show that the proposed method using depth information and SURF algorithm is more effective than conventional methods at processing time and accuracy.
机译:本文研究了一种基于Kinect深度信息和快速鲁棒特征(SURF)算法的实时目标跟踪算法。 Kinect的深度信息用于克服连续自适应均值偏移(Camshift)和均值偏移具有光照和噪声的缺点。由于SURF算法的处理时间比尺度不变特征变换(SIFT)的处理时间快,因此将SURF算法的兴趣点检测用于实时处理。本文利用背景建模和SURF算法对深度信息进行兴趣点检测,利用兴趣点检测可以创建搜索窗口,提出了一种基于Camshift和兴趣点检测的目标跟踪方法。该算法在处理时间和准确性上比传统方法更有效。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号