首页> 外文会议>Advances in photonics of quantum computing, memory, and communication V >Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology
【24h】

Rare-earth-doped materials with application to optical signal processing, quantum information science, and medical imaging technology

机译:稀土掺杂材料在光信号处理,量子信息科学和医学成像技术中的应用

获取原文
获取原文并翻译 | 示例

摘要

Unique spectroscopic properties of isolated rare earth ions in solids offer optical linewidths rivaling those of trapped single atoms and enable a variety of recent applications. We design rare-earth-doped crystals, ceramics, and fibers with persistent or transient "spectral hole" recording properties for applications including high-bandwidth optical signal processing where light and our solids replace the high-bandwidth portion of the electronics; quantum cryptography and information science including the goal of storage and recall of single photons; and medical imaging technology for the 700-900 nm therapeutic window. Ease of optically manipulating rare-earth ions in solids enables capturing complex spectral information in 105 to 108 frequency bins. Combining spatial holography and spectral hole burning provides a capability for processing high-bandwidth RF and optical signals with sub-MHz spectral resolution and bandwidths of tens to hundreds of GHz for applications including range-Doppler radar and high bandwidth RF spectral analysis. Simply stated, one can think of these crystals as holographic recording media capable of distinguishing up to 108 different colors. Ultra-narrow spectral holes also serve as a vibration-insensitive sub-kHz frequency reference for laser frequency stabilization to a part in 1013 over tens of milliseconds. The unusual properties and applications of spectral hole burning of rare earth ions in optical materials are reviewed. Experimental results on the promising Tm3+:LiNbO3 material system are presented and discussed for medical imaging applications. Finally, a new application of these materials as dynamic optical filters for laser noise suppression is discussed along with experimental demonstrations and theoretical modeling of the process.
机译:固体中分离出的稀土离子的独特光谱性质提供了与被俘获的单个原子相媲美的光学线宽,并可以用于多种近期应用。我们设计具有持久或瞬态“光谱孔”记录特性的掺稀土晶体,陶瓷和纤维,其应用包括高带宽光信号处理,其中光和固体替代电子设备的高带宽部分;量子密码学和信息科学,包括存储和回收单个光子的目标; 700-900 nm治疗窗的医学成像技术。轻松地光学处理固体中的稀土离子,可以捕获105至108个频点中的复杂光谱信息。将空间全息术和频谱孔燃烧相结合,可以处理具有亚MHz频谱分辨率和数十到数百GHz带宽的高带宽RF和光信号,从而适用于范围多普勒雷达和高带宽RF频谱分析等应用。简而言之,人们可以将这些晶体视为能够区分多达108种不同颜色的全息记录介质。超窄光谱孔还可以作为振动不敏感的亚kHz频率参考,用于在1013毫秒内将激光频率稳定到1013的一部分。综述了光学材料中稀土离子光谱孔燃烧的异常性质和应用。提出并讨论了有前途的Tm3 +:LiNbO3材料系统的实验结果,用于医学成像应用。最后,讨论了这些材料作为动态光学滤光片以抑制激光噪声的新应用,以及该过程的实验演示和理论建模。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号