首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.3; Lecture Notes in Computer Science; 4493 >A Fast and Accurate Progressive Algorithm for Training Transductive SVMs
【24h】

A Fast and Accurate Progressive Algorithm for Training Transductive SVMs

机译:一种快速,准确的渐进式支持向量机训练算法

获取原文
获取原文并翻译 | 示例

摘要

This paper develops a fast and accurate algorithm for training transductive SVMs classifiers, which utilizes the classification information of unlabeled data in a progressive way. For improving the generalization accuracy further, we employ three important criteria to enhance the algorithm, i.e. confidence evaluation, suppression of labeled data, stopping with stabilization. Experimental results on several real world datasets confirm the effectiveness of these criteria and show that the new algorithm can reach to comparable accuracy as several state-of-the-art approaches for training transductive SVMs in much less training time.
机译:本文提出了一种训练转导SVM分类器的快速准确的算法,该算法逐步利用了未标记数据的分类信息。为了进一步提高泛化精度,我们采用了三个重要的标准来增强算法,即置信度评估,抑制标记数据,稳定停止。在多个现实世界数据集上的实验结果证实了这些标准的有效性,并表明,与几种用于在短时间内训练转导SVM的最新方法相比,该新算法可以达到相当的精度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号