首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.3; Lecture Notes in Computer Science; 4493 >A Novel Residual Capacity Estimation Method Based on Extension Neural Network for Lead-Add Batteries
【24h】

A Novel Residual Capacity Estimation Method Based on Extension Neural Network for Lead-Add Batteries

机译:基于扩展神经网络的铅蓄电池剩余容量估算方法

获取原文
获取原文并翻译 | 示例

摘要

This paper presents a state-of-charge (SOC) estimation method based on extension neural network (ENN) theory for lead-acid batteries. First, a constant electric current discharging experiment with an electronic load for lead-acid batteries is made to measure and record the internal resistance and open-circuit-voltage by utilizing internal resistance tester. Then, the experimental data are adopted to construct an estimation method based on ENN for recognizing the residual capacity of the lead-acid battery. The simulated results indicate that the proposed estimation method can determine the residual capacity of lead-acid batteries rapidly and accurately with less time and memory consumption.
机译:提出了一种基于扩展神经网络(ENN)理论的铅酸蓄电池充电状态(SOC)估计方法。首先,通过使用内阻测试仪,对铅酸电池的电子负载进行恒流放电实验,以测量和记录内阻和开路电压。然后,利用实验数据构建了基于ENN的铅酸蓄电池剩余容量识别方法。仿真结果表明,所提出的估计方法可以快速,准确地确定铅酸蓄电池的剩余容量,并节省时间和内存。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号