首页> 外文OA文献 >Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles
【2h】

Neural network-based residual capacity indicator for nickel-metal hydride batteries in electric vehicles

机译:基于神经网络的电动汽车用镍氢电池剩余容量指标

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This paper presents a new estimation approach for the battery residual capacity (BRC) indicator in electric vehicles (EVs). The key of this approach is to model the EV battery by using a neural network (NN) with a newly defined output and newly proposed inputs. The inputs are the discharged and regenerative capacity distribution and the temperature. The output is the state of available capacity (SOAC) which represents the BRC. Various SOACs of the nickel-metal hydride (Ni-MH) battery are experimentally investigated under different EV discharge current profiles and temperatures. The corresponding data are recorded to train and verify the proposed NN. The results indicate that the NN can provide an accurate and effective estimation of the BRC. Moreover, this NN can be easily implemented as the BRC indicator or estimator for EVs by using a low-cost microcontroller. © 2005 IEEE.
机译:本文提出了一种新的估算电动汽车(EV)电池剩余容量(BRC)指标的方法。该方法的关键是通过使用具有新定义的输出和新提议的输入的神经网络(NN)对电动汽车电池建模。输入是放电和再生容量分布以及温度。输出是可用容量(SOAC)的状态,代表BRC。在不同的EV放电电流曲线和温度下,对镍氢(Ni-MH)电池的各种SOAC进行了实验研究。记录相应的数据以训练和验证提议的NN。结果表明,神经网络可以提供准确有效的BRC估计。此外,通过使用低成本微控制器,该NN可以轻松实现为EV的BRC指标或估算器。 ©2005 IEEE。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号