首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.3; Lecture Notes in Computer Science; 4493 >Approximation Capability Analysis of Parallel Process Neural Network with Application to Aircraft Engine Health Condition Monitoring
【24h】

Approximation Capability Analysis of Parallel Process Neural Network with Application to Aircraft Engine Health Condition Monitoring

机译:并行过程神经网络的逼近能力分析及其在飞机发动机健康状态监测中的应用

获取原文
获取原文并翻译 | 示例

摘要

Parallel process neural network (PPNN) is a novel spatio-temporal artificial neural network. The approximation capability analysis is very important for the PPNN to enhance its adaptability to time series prediction. The approximation capability of the PPNN is analyzed in this paper, and it can be proved that the PPNN can approximate any continuous functional to any degree of accuracy. Finally, the PPNN is utilized to predict the iron concentration of the lubricating oil in the aircraft engine health condition monitoring to highlight the approximation capability of the PPNN, and the application test results also indicate that the PPNN can be used as a well predictive maintenance tool in the aircraft engine condition monitoring.
机译:并行过程神经网络(PPNN)是一种新颖的时空人工神经网络。逼近能力分析对于PPNN增强其对时间序列预测的适应性非常重要。本文分析了PPNN的逼近能力,可以证明PPNN可以以任意精度逼近任何连续函数。最后,在飞机发动机健康状况监测中,利用PPNN预测润滑油中的铁含量,以突出PPNN的近似能力,并且应用测试结果还表明PPNN可以作为良好的预测性维护工具在飞机发动机状况监测中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号