首页> 外文会议>Advances in Neural Networks - ISNN 2007 pt.2; Lecture Notes in Computer Science; 4492 >Adaptive Training of a Kernel-Based Representative and Discriminative Nonlinear Classifier
【24h】

Adaptive Training of a Kernel-Based Representative and Discriminative Nonlinear Classifier

机译:基于核的有区别的非线性分类器的自适应训练

获取原文
获取原文并翻译 | 示例

摘要

Adaptive training of a classifier is necessary when feature selection and sparse representation are considered. Previously, we proposed a kernel-based nonlinear classifier for simultaneous representation and discrimination of pattern features. Its batch training has a closed-form solution. In this paper we implement an adaptive training algorithm using an incremental learning procedure that exactly retains the generalization ability of batch training. It naturally yields a sparse representation. The feasibility of the presented methods is illustrated by experimental results on handwritten digit classification.
机译:当考虑特征选择和稀疏表示时,必须对分类器进行自适应训练。以前,我们提出了一种基于核的非线性分类器,用于同时表示和识别图案特征。其批处理培训具有封闭形式的解决方案。在本文中,我们使用增量学习过程实现了自适应训练算法,该算法恰好保留了批量训练的泛化能力。它自然会产生一个稀疏的表示。手写数字分类的实验结果说明了所提出方法的可行性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号