首页> 外文会议>Advances in Natural Computation pt.2; Lecture Notes in Computer Science; 4222 >Kernel-Based Method for Automated Walking Patterns Recognition Using Kinematics Data
【24h】

Kernel-Based Method for Automated Walking Patterns Recognition Using Kinematics Data

机译:运动学数据的基于核的自动行走模式识别方法

获取原文
获取原文并翻译 | 示例

摘要

A novel scheme is proposed for training Support Vector Machines (SVMs) in automatic recognition of young-old gait types with a higher accuracy. Kernel-based Principal Component Analysis (KPCA) is employed to initiate the training set, which efficiently extracts more nonlinear features from highly correlated time-dependent gait variables and improves the generalization performance of SVM. With the proposed method (abbreviated K-SVM), the gait patterns of 24 young and 24 elderly normal participants were analyzed. Cross-validation test results show that the generalization performance of K-SVM was on average 89.6% to identify young and elderly gait patterns, compared with that of PCA-based SVM 83.3%, SVM 81.3% and a neural network 75.0%. These results suggest that K-SVM can be applied as an efficient gait classifier for young and elderly gait patterns.
机译:提出了一种新的方案来训练支持向量机(SVM),以更高的精度自动识别年轻的步态类型。基于核的主成分分析(KPCA)用于启动训练集,该训练集可从高度相关的随时间变化的步态变量中高效提取更多非线性特征,并提高SVM的泛化性能。使用提出的方法(缩写为K-SVM),分析了24名年轻的和24名老年的正常参与者的步态模式。交叉验证测试结果表明,K-SVM在识别年轻人和老年人步态模式方面的泛化性能平均为89.6%,而基于PCA的SVM为83.3%,SVM为81.3%和神经网络为75.0%。这些结果表明,K-SVM可以用作年轻人和老年人步态模式的有效步态分类器。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号