首页> 外文会议>Advances in Natural Computation pt.2; Lecture Notes in Computer Science; 4222 >A Study on Vision-Based Robust Hand-Posture Recognition by Learning Similarity Between Hand-Posture and Structure
【24h】

A Study on Vision-Based Robust Hand-Posture Recognition by Learning Similarity Between Hand-Posture and Structure

机译:通过学习手势与结构之间的相似性,进行基于视觉的鲁棒手势识别研究

获取原文
获取原文并翻译 | 示例

摘要

This paper proposes a robust hand-posture recognition method by learning similarity between hand-posture and structure for the performance improvement of vision-based hand-posture recognition. The difficulties in vision-based hand-posture recognition lie in viewing direction dependency and self-occlusion problem due to the high degree-of-freedom of human hand. General approaches to deal with these problems include multiple camera approach and methods of limiting the relative angle between cameras and the user's hand. In the case of using multiple cameras, however, fusion techniques to induce the final decision should be considered. Limiting the angle of user's hand restricts the user's freedom. The proposed method combines angular features and appearance features to describe hand-postures by a two-layered data structure and includes learning the similarity between the two types of features. The validity of the proposed method is evaluated by applying it to the hand-posture recognition system using three cameras.
机译:本文通过学习手势与结构之间的相似性,提出了一种鲁棒的手势识别方法,以提高基于视觉的手势识别的性能。基于视觉的手姿势识别的困难在于由于人的手的高度自由度而导致的观看方向依赖性和自我遮挡问题。解决这些问题的一般方法包括多相机方法和限制相机与用户手之间相对角度的方法。但是,在使用多台摄像机的情况下,应考虑使用融合技术来做出最终决定。限制用户的手的角度限制了用户的自由度。所提出的方法结合了角度特征和外观特征以通过两层数据结构描述手势,并且包括学习两种类型特征之间的相似性。通过将其应用于使用三个摄像机的手势识别系统,评估了该方法的有效性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号