首页> 外文会议>Advances in Natural Computation pt.1; Lecture Notes in Computer Science; 4221 >Clonal Selection Algorithm with Search Space Expansion Scheme for Global Function Optimization
【24h】

Clonal Selection Algorithm with Search Space Expansion Scheme for Global Function Optimization

机译:具有搜索空间扩展方案的全局功能优化克隆选择算法

获取原文
获取原文并翻译 | 示例

摘要

Unlike evaluation strategy (ES) and evaluation programming (EP), clonal selection algorithm (CSA) strongly depends on the given search space for the optimal solution problem. The interval of existing optimal solution is unknown in most practical problem, then the suitable search space can not be given and the performance of CSA are influence greatly. In this study, a self-adaptive search space expansion scheme and the clonal selection algorithm are integrated to form a new algorithm, Self Adaptive Clonal Selection Algorithm, termed as SACSA. It is proved that SACSA converges to global optimum with probability 1. Qualitative analyzes and experiments show that, compared with the standard genetic algorithm using the same search space expansion scheme, SACSA has a better performance in many aspects including the convergence speed, the solution precision and the stability. Then, we study more about the new algorithm on optimizing the time-variable function. SACSA has been confirmed that it is competent for solving global function optimization problems which the initial search space is unknown.
机译:与评估策略(ES)和评估编程(EP)不同,克隆选择算法(CSA)强烈依赖于给定的搜索空间来找到最佳解决方案问题。在大多数实际问题中,现有最优解的间隔是未知的,因此无法给出合适的搜索空间,对CSA的性能影响很大。在这项研究中,自适应搜索空间扩展方案和克隆选择算法相结合,形成了一种新的算法,称为SACSA的自适应克隆选择算法。证明SACSA以1的概率收敛到全局最优。定性分析和实验表明,与使用相同搜索空间扩展方案的标准遗传算法相比,SACSA在收敛速度,求解精度等诸多方面都有较好的表现。和稳定性。然后,我们将研究更多关于优化时变函数的新算法。 SACSA已被证实能够胜任初始搜索空间未知的全局功能优化问题。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号