首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >Named Entity Recognition Using Acyclic Weighted Digraphs: A Semi-supervised Statistical Method
【24h】

Named Entity Recognition Using Acyclic Weighted Digraphs: A Semi-supervised Statistical Method

机译:使用非循环加权有向图的命名实体识别:一种半监督统计方法

获取原文
获取原文并翻译 | 示例

摘要

We propose a NE (Named Entity) recognition system using a semisupervised statistical method. In training time, the NE recognition system builds error-prone training data only using a conventional POS (Part-Of-Speech) tagger and a NE dictionary that semi-automatically is constructed. Then, the NE recognition system generates a co-occurrence similarity matrix from the errorprone training corpus. In running time, the NE recognition system constructs AWDs (Acyclic Weighted Digraphs) based on the co-occurrence similarity matrix. Then, the NE recognition system detects NE candidates and assigns categories to the NE candidates using Viterbi searching on the AWDs. In the preliminary experiments on PLO (Person, Location and Organization) recognition, the proposed system showed 81.32% on average F1-measure.
机译:我们提出了一种使用半监督统计方法的NE(命名实体)识别系统。在训练时,NE识别系统仅使用常规POS(词性)标记器和半自动构建的NE词典来构建易于出错的训练数据。然后,NE识别系统从容易出错的训练语料生成同现相似度矩阵。在运行时,NE识别系统基于同现相似矩阵构造AWD(非循环加权有向图)。然后,NE识别系统检测NE候选者,并使用AWD上的维特比搜索将类别分配给NE候选者。在对PLO(人员,位置和组织)识别的初步实验中,所提出的系统显示出平均F1量度为81.32%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号