首页> 外文会议>Advances in Knowledge Discovery and Data Mining; Lecture Notes in Artificial Intelligence; 4426 >CCRM: An Effective Algorithm for Mining Commodity Information from Threaded Chinese Customer Reviews
【24h】

CCRM: An Effective Algorithm for Mining Commodity Information from Threaded Chinese Customer Reviews

机译:CCRM:一种有效的算法,可从中文的客户评论中挖掘商品信息

获取原文
获取原文并翻译 | 示例

摘要

This paper is concerned with the problem of mining commodity information from threaded Chinese customer reviews. Chinese online commodity forums, which are developing rapidly, provide a good environment for customers to share reviews. However, due to noises and navigational limitations, it is hard to have a clear view of a commodity from thousands of related reviews. Further more, due to different characters between Chinese and English, Researching approaches may vary a lot. This paper aims to automatically mine out key information from commodity reviews. An effective algorithm, i.e. Chinese Commodity Review Miner (CCRM) is proposed. The algorithm can be divided into two parts. First, we propose an efficient rule based algorithm for commodity feature extraction as well as a probabilistic model for feature ranking. Second, we propose a top-to-down algorithm to reorganize the extracted features into hierarchical structure. A prototype system based on CCRM is also implemented. Using CCRM, users can easily acquire the outline of a commodity, and navigate freely in it.
机译:本文关注的是从线程化的中国客户评论中挖掘商品信息的问题。快速发展的中国在线商品论坛为客户分享评论提供了良好的环境。但是,由于噪音和航行限制,很难从成千上万的相关评论中清楚地了解商品。此外,由于中英文之间的字符不同,研究方法可能相差很大。本文旨在自动从商品评论中挖掘关键信息。提出了一种有效的算法,即中国商品评论矿工(CCRM)。该算法可以分为两部分。首先,我们提出了一种有效的基于规则的商品特征提取算法以及一种用于特征排名的概率模型。其次,我们提出了一种从上到下的算法,将提取的特征重新组织为分层结构。还实现了基于CCRM的原型系统。使用CCRM,用户可以轻松获取商品轮廓,并在其中自由浏览。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号