首页> 外文会议>Advances in Information Systems; Lecture Notes in Computer Science; 4243 >BFPκNN: An Efficient κ-Nearest-Neighbor Search Algorithm for Historical Moving Object Trajectories
【24h】

BFPκNN: An Efficient κ-Nearest-Neighbor Search Algorithm for Historical Moving Object Trajectories

机译:BFPκNN:一种用于历史运动对象轨迹的高效κ最近邻搜索算法

获取原文
获取原文并翻译 | 示例

摘要

This paper studies κ-nearest-neighbor (κNN) search on R-tree-based structures storing historical information about trajectories. We develop BFPκNN, an efficient best-first based algorithm for handling κNN search with arbitrary values of k, which is I/O optimal, i.e., it performs a single access only to those qualifying nodes that may contain the final result. Furthermore, in order to save memory space consumption and reduce CPU overhead further, several effective pruning heuristics are also proposed. Finally, extensive experiments with synthetic and real datasets show that BFPκNN outperforms its competitor significantly in both efficiency and scalability in all cases.
机译:本文研究了基于R树的结构的κ最近邻(κNN)搜索,该结构存储了有关轨迹的历史信息。我们开发了BFPκNN,这是一种高效的基于最佳优先的算法,用于处理具有I / O最佳值k的任意k的κNN搜索,即,它仅对可能包含最终结果的那些合格节点执行单次访问。此外,为了节省内存空间消耗并进一步减少CPU开销,还提出了几种有效的修剪启发式方法。最后,通过综合和真实数据集进行的大量实验表明,在所有情况下,BFPκNN的效率和可扩展性均明显优于其竞争对手。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号