首页> 外文会议>Advances in visual computing >A Human Inspired Local Ratio-Based Algorithm for Edge Detection in Fluorescent Cell Images
【24h】

A Human Inspired Local Ratio-Based Algorithm for Edge Detection in Fluorescent Cell Images

机译:基于人类启发式局部比率的荧光细胞图像边缘检测算法

获取原文
获取原文并翻译 | 示例

摘要

We have developed a new semi-automated method for segmenting images of biological cells seeded at low density on tissue culture substrates, which we use to improve the generation of reference data for the evaluation of automated segmentation algorithms. The method was designed to mimic manual cell segmentation and is based on a model of human visual perception. We demonstrate a need for automated methods to assist with the generation of reference data by comparing several sets of masks from manually segmented cell images created by multiple independent hand-selections of pixels that belong to cell edges. We quantify the differences in these manually segmented masks and then compare them with masks generated from our new segmentation method which we use on cell images acquired to ensure very sharp, clear edges. The resulting masks from 16 images contain 71 cells and show that our semi-automated method for reference data generation locates cell edges more consistently than manual segmentation alone and produces better edge detection than other techniques like 5-means clustering and active contour segmentation for our images.
机译:我们已经开发出一种新的半自动化方法,用于分割以低密度接种在组织培养基质上的生物细胞图像,该方法可用于改进参考数据的生成,以评估自动分割算法。该方法旨在模拟人工细胞分割,并基于人类视觉感知模型。我们证明了需要一种自动化方法,以通过比较属于多个单元格边缘的像素的多个独立手动选择所创建的手动分割的单元格图像中的几组蒙版,来辅助参考数据的生成。我们将对这些手动分割的蒙版中的差异进行量化,然后将它们与通过我们的新分割方法生成的蒙版进行比较,该新分割方法将用于获取的细胞图像以确保非常清晰的边缘。从16张图像生成的蒙版包含71个单元格,这表明我们的半自动参考数据生成方法比单独的手动分割更一致地定位单元格边缘,并且比其他技术(如5均值聚类和图像主动轮廓分割)产生更好的边缘检测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号