首页> 外文会议>Advances in neural network research and applications >Passivity Analysis of Stochastic Neural Networks with Mixed Time-Varying Delays
【24h】

Passivity Analysis of Stochastic Neural Networks with Mixed Time-Varying Delays

机译:混合时变时滞随机神经网络的无源性分析

获取原文
获取原文并翻译 | 示例

摘要

In this paper, the passivity problem is investigated for a class of stochastic neural networks with discrete time-varying delay and distributed time-varying delay as well as generalized activation functions. By constructing appropriate Lyapunov-Krasovskii functionals, and employing the free-weighting matrix method and stochastic analysis technique, a delay-dependent criterion for checking the passivity of the addressed neural networks is established in terms of linear matrix inequalities (LMIs), which can be checked numerically using the effective LMI toolbox in MATLAB. An example is given to show the effectiveness and less conservatism of the proposed criterion. It is noteworthy that the traditional assumptions on the differentiability of the time-varying delays and the boundedness of its derivative are removed.
机译:本文研究了一类具有离散时变时滞和分布时变时滞以及广义激活函数的随机神经网络的无源性问题。通过构造适当的Lyapunov-Krasovskii泛函,并采用自由加权矩阵法和随机分析技术,建立了基于线性矩阵不等式(LMI)的依赖于延迟的准则来检查所寻址神经网络的无源性。使用MATLAB中有效的LMI工具箱进行了数字检查。给出一个例子来说明所提出标准的有效性和保守性。值得注意的是,消除了关于时变时延的可微性及其导数的有界性的传统假设。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号