首页> 外文会议>Advances in Multimedia Modeling >Selective Sampling Based on Dynamic Certainty Propagation for Image Retrieval
【24h】

Selective Sampling Based on Dynamic Certainty Propagation for Image Retrieval

机译:基于动态确定性传播的图像选择性抽取

获取原文
获取原文并翻译 | 示例

摘要

In relevance feedback of image retrieval, selective sampling is often used to alleviate the burden of labeling by selecting only the most informative data to label. Traditional data selection scheme often selects a batch of data at a time and label them all together, which neglects the data's correlation and thus jeopardizes the effectiveness. In this paper, we propose a novel Dynamic Certainty Propagation (DCP) scheme for informative data selection. For each unlabeled data, we define the notion of certainty to quantify our confidence in its predicted label. Every time, we only label one single data point with the lowest degree of certainty. Then we update the rest unlabeled data's certainty dynamically according to their correlation. This one-by-one labeling offers us extra guidance from the last labeled data for the next labeling. Experiments show that the DCP scheme outperforms the traditional method evidently.
机译:在图像检索的相关反馈中,选择性采样通常用于通过仅选择最有用的数据进行标记来减轻标记的负担。传统的数据选择方案经常一次选择一批数据并将它们全部标记在一起,这忽略了数据的相关性,从而损害了有效性。在本文中,我们提出了一种新颖的动态确定性传播(DCP)方案,用于信息数据选择。对于每个未标记的数据,我们定义确定性的概念以量化我们对其预测标记的信心。每次,我们仅以最低的确定性标记一个数据点。然后,我们根据它们之间的相关性动态更新其余未标记数据的确定性。这个一对一的标签为我们提供了从上一个标签数据到下一个标签的额外指导。实验表明,DCP方案明显优于传统方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号