首页> 外文会议>Advances in information retrieval >Joint Ranking for Multilingual Web Search
【24h】

Joint Ranking for Multilingual Web Search

机译:多语言网页搜索联合排名

获取原文
获取原文并翻译 | 示例

摘要

Ranking for multilingual information retrieval (MLIR) is a task to rank documents of different languages solely based on their relevancy to the query regardless of query's language. Existing approaches are focused on combining relevance scores of different retrieval settings, but do not learn the ranking function directly. We approach Web MLIR ranking within the learning-to-rank (L2R) framework. Besides adopting popular L2R algorithms to MLIR, a joint ranking model is created to exploit the correlations among documents, and induce the joint relevance probability for all the documents. Using this method, the relevant documents of one language can be leveraged to improve the relevance estimation for documents of different languages. A probabilistic graphical model is trained for the joint relevance estimation. Especially, a hidden layer of nodes is introduced to represent the salient topics among the retrieved documents, and the ranks of the relevant documents and topics are determined collaboratively while the model approaching to its thermal equilibrium. Furthermore, the model parameters are trained under two settings: (1) optimize the accuracy of identifying relevant documents; (2) directly optimize information retrieval evaluation measures, such as mean average precision. Benchmarks show that our model significantly outperforms the existing approaches for MLIR tasks.
机译:多语言信息检索(MLIR)的排名是一项任务,仅根据与查询相关的语言对不同语言的文档进行排名,而与查询的语言无关。现有的方法集中于组合不同检索设置的相关性分数,但是不直接学习排名功能。我们在学习排名(L2R)框架内处理Web MLIR排名。除了在MLIR中采用流行的L2R算法外,还创建了联合排名模型以利用文档之间的相关性,并得出所有文档的联合相关概率。使用这种方法,可以利用一种语言的相关文档来提高对不同语言文档的相关性估计。训练概率图形模型以进行联合相关性估计。特别是,引入了一个隐藏的节点层来表示检索到的文档中的显着主题,并在模型达到其热平衡时协同确定相关文档和主题的等级。此外,模型参数在两个设置下进行训练:(1)优化识别相关文档的准确性; (2)直接优化信息检索评价手段,例如平均平均精度。基准测试表明,我们的模型明显优于MLIR任务的现有方法。

著录项

  • 来源
    《Advances in information retrieval》|2009年|P.114-125|共12页
  • 会议地点 Toulouse(FR);Toulouse(FR)
  • 作者单位

    The Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;

    rnMicrosoft Research Asia, No.49, Zhichun Road, Beijing 100190, China;

    rnMicrosoft Research Asia, No.49, Zhichun Road, Beijing 100190, China;

    rnThe Chinese University of Hong Kong, Shatin, N.T., Hong Kong, China;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 信息处理(信息加工);
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号