首页> 外文会议>Advances in databases >Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth
【24h】

Mining Sequential Patterns from Probabilistic Databases by Pattern-Growth

机译:通过模式增长从概率数据库中挖掘顺序模式

获取原文
获取原文并翻译 | 示例

摘要

We propose a pattern-growth approach for mining sequential patterns from probabilistic databases. Our considered model of uncertainty is about the situations where there is uncertainty in associating an event with a source; and consider the problem of enumerating all sequences whose expected support satisfies a user-defined threshold 6. In an earlier work [Muzammal and Raman, PAKDD'll], adapted representative candidate generate-and-test approaches, GSP (breadth-first sequence lattice traversal) and SPADE/SPAM (depth-first sequence lattice traversal) to the probabilistic case. The authors also noted the difficulties in generalizing PrefixSpan to the probabilistic case (PrefixSpan is a pattern-growth algorithm, considered to be the best performer for deterministic sequential pattern mining). We overcome these difficulties in this note and adapt PrefixSpan to work under probabilistic settings. We then report on an experimental evaluation of the candidate generate-and-test approaches against the pattern-growth approach.
机译:我们提出了一种模式增长方法,用于从概率数据库中挖掘顺序模式。我们考虑的不确定性模型是关于将事件与来源相关联时存在不确定性的情况;并考虑枚举期望支持度满足用户定义阈值的所有序列的问题。6在早期工作中[Muzammal和Raman,PAKDD'll],采用了具有代表性的候选生成和测试方法GSP(宽度优先序列格)遍历)和SPADE / SPAM(深度优先序列格遍历)。作者还指出了将PrefixSpan推广到概率情况的困难(PrefixSpan是一种模式增长算法,被认为是确定性顺序模式挖掘的最佳执行者)。我们在本说明中克服了这些困难,并使PrefixSpan适应在概率设置下工作。然后,我们报告针对模式增长方法的候选生成和测试方法的实验评估。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号