首页> 外文会议>Advances in databases >Expanding Sensor Networks to Automate Knowledge Acquisition
【24h】

Expanding Sensor Networks to Automate Knowledge Acquisition

机译:扩展传感器网络以自动化知识获取

获取原文
获取原文并翻译 | 示例

摘要

The availability of accurate, low-cost sensors to scientists has resulted in widespread deployment in a variety of sporting and health environments. The sensor data output is often in a raw, proprietary or unstructured format. As a result, it is often difficult to query multiple sensors for complex properties or actions. In our research, we deploy a heterogeneous sensor network to detect the various biological and physiological properties in athletes during training activities. The goal for exercise physiologists is to quickly identify key intervals in exercise such as moments of stress or fatigue. This is not currently possible because of low level sensors and a lack of query language support. Thus, our motivation is to expand the sensor network with a contextual layer that enriches raw sensor data, so that it can be exploited by a high level query language. To achieve this, the domain expert specifies events in a tradi-ational event-condition-action format to deliver the required contextual enrichment.
机译:科学家们可以使用精确,低成本的传感器,从而导致在各种体育和健康环境中的广泛部署。传感器数据输出通常采用原始,专有或非结构化格式。结果,通常难以向多个传感器查询复杂的特性或动作。在我们的研究中,我们部署了一个异构传感器网络来检测运动员在训练活动中的各种生物学和生理特性。运动生理学家的目标是快速识别运动中的关键间隔,例如压力或疲劳时刻。由于传感器级别低和缺乏查询语言支持,当前无法实现。因此,我们的动机是通过上下文层扩展传感器网络,该上下文层丰富了原始传感器数据,以便可以由高级查询语言加以利用。为了实现这一点,领域专家会以传统的事件-条件-动作格式指定事件,以提供所需的上下文丰富性。

著录项

  • 来源
    《Advances in databases》|2011年|p.97-107|共11页
  • 会议地点 Manchester(GB);Manchester(GB)
  • 作者单位

    CLARITY: Centre for Sensor Web Technologies, Dublin City University;

    CLARITY: Centre for Sensor Web Technologies, Dublin City University;

    Interoperable Systems Group, School of Computing, Dublin City University, Glasnevin, Dublin 9, Ireland;

    CLARITY: Centre for Sensor Web Technologies, Dublin City University;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号