首页> 外文会议>Advances in computation and intelligence >Feature Selection Using Ant Colony Optimization for Text-Independent Speaker Verification System
【24h】

Feature Selection Using Ant Colony Optimization for Text-Independent Speaker Verification System

机译:基于蚁群算法的文本独立说话人验证系统特征选择

获取原文
获取原文并翻译 | 示例

摘要

With the growing trend toward remote security verification procedures for telephone banking, biometric security measures and similar applications, automatic speaker verification (ASV) has received a lot of attention in recent years. The complexity of ASV system and its verification time depends on the number of feature vectors, their dimensionality, the complexity of the speaker models and the number of speakers. In this paper, we concentrate on optimizing dimensionality of feature space by selecting relevant features. It presents another method that is based on ant colony optimization (ACO). The performance of the proposed algorithm is compared to the performance of genetic algorithm on the task of feature selection in TIMIT corpora. The results of experiments indicate that with the optimized feature set, the performance of the ASV system is improved.
机译:随着电话银行,生物特征安全措施和类似应用程序的远程安全验证程序的增长趋势,自动扬声器验证(ASV)近年来受到了广泛的关注。 ASV系统的复杂性及其验证时间取决于特征向量的数量,其维数,说话者模型的复杂程度和说话者的数量。在本文中,我们专注于通过选择相关特征来优化特征空间的维数。它提出了另一种基于蚁群优化(ACO)的方法。将该算法的性能与遗传算法在TIMIT语料库中的特征选择任务上的性能进行了比较。实验结果表明,通过优化的功能集,ASV系统的性能得到了改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号