首页> 外文会议>Advances in Computation and Intelligence >Language Feature Mining for Music Emotion Classification via Supervised Learning from Lyrics
【24h】

Language Feature Mining for Music Emotion Classification via Supervised Learning from Lyrics

机译:通过歌词的有监督学习进行音乐情感分类的语言特征挖掘

获取原文
获取原文并翻译 | 示例

摘要

In recent years, efficient and intelligent music information retrieval became very important. One essential aspect of this field is music emotion classification by earning from lyrics. This problem is different from traditional text categorization in that more linguistic or semantic information is required for better emotion analysis. Therefore, we focus on how to extract useful and meaningful language features in this paper. We investigate three kinds of preprocessing methods and a series of language grams having different n-order under the well-known n-gram language model framework to extract more semantic features. Then, we employ three supervised learning methods (Naive Bayes, maximum entropy classification, and support vector machines) to examine the classification performance. Experimental results show that feature extraction methods improve music emotion classification accuracies. Maximum entropy classification with unigram+bigram+trigram gets best accuracy and it is suitable for music emotion classification.
机译:近年来,高效智能的音乐信息检索变得非常重要。该领域的一个基本方面是通过从歌词中获得收入来进行音乐情感分类。这个问题与传统的文本分类不同,因为需要更多的语言或语义信息才能进行更好的情感分析。因此,在本文中,我们集中于如何提取有用和有意义的语言特征。我们在著名的n-gram语言模型框架下研究了三种预处理方法和一系列具有不同n阶的语言克,以提取更多的语义特征。然后,我们采用三种监督学习方法(朴素贝叶斯,最大熵分类和支持向量机)来检查分类性能。实验结果表明,特征提取方法可以提高音乐情感分类的准确性。用unigram + bigram + trigram进行的最大熵分类具有最佳准确性,适用于音乐情感分类。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号