首页> 外文会议>Advances in data mining : Applications and theoretical aspects >A Data Mining Method for Finding Hidden Relationship in Blood and Urine Examination Items for Health Check
【24h】

A Data Mining Method for Finding Hidden Relationship in Blood and Urine Examination Items for Health Check

机译:一种用于健康检查的血液和尿液检查项目中隐藏关系的数据挖掘方法

获取原文
获取原文并翻译 | 示例

摘要

Our periodic health examination often describes whether each examination item in blood and urine takes in the reference range of each examination item and a simple summary report on checks in everyday life and the possibility of suspicious diseases. However, it uses n variable items such as AST(GOT), ALT(GPT) which are less correlated, and often includes expensive tumor markers. Therefore, this paper proposes a data mining method for finding hidden relationships between these items in order to reduce the examination fee and giving a report depending on individuals. Since low correlation coefficients are shown in most pairs of items over all clients, a set of item's values in consecutive health examinations of each client is investigated for data mining. Four groups are formed according to the frequency taking outside the reference range in an item for three consecutive examinations, and average values of the other items included in each group are calculated in all pairs of items. The experiment results for three consecutive health examinations show that a lot of item pairs have positive or negative correlations between different frequencies with an item and the averages with the other item despite the fact that their correlation coefficients are small. The result shows both possible reducting of reducing the examination fee as inexpensive as possible and the possibility of a health-care report reflecting individuals.
机译:我们的定期健康检查经常描述血液和尿液中的每个检查项目是否都在每个检查项目的参考范围内,并提供有关日常检查和可疑疾病可能性的简单总结报告。但是,它使用n个相关性较低的变量,例如AST(GOT),ALT(GPT),并且通常包含昂贵的肿瘤标志物。因此,本文提出了一种数据挖掘方法,用于发现这些项目之间的隐藏关系,以减少检查费用并根据个人情况提供报告。由于在所有客户端的大多数项目对中都显示出低的相关系数,因此将对每个客户端的连续健康检查中的一组项目值进行调查,以进行数据挖掘。在三个连续检查项目中,根据超出基准范围的频率形成四个组,并在所有项目对中计算每个组中包含的其他项目的平均值。连续三次健康检查的实验结果表明,尽管许多项目对的相关系数很小,但它们之间的不同频率与另一个项目的平均值之间存在正相关或负相关性。结果表明,既可以减少尽可能便宜的检查费用,又可以反映出个人的健康报告。

著录项

  • 来源
  • 会议地点 Leipzig(DE);Leipzig(DE)
  • 作者单位

    International Research and Educational Institute for Integrated Medical Science (IREIIMS), Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan ATR Intelligent Robotics and Communication Laboratories, 2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288 Japan;

    International Research and Educational Institute for Integrated Medical Science (IREIIMS), Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan ATR Intelligent Robotics and Communication Laboratories, 2-2-2, Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288 Japan;

    International Research and Educational Institute for Integrated Medical Science (IREIIMS), Tokyo Women's Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666 Japan;

    International Research and Educationa;

  • 会议组织
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 TP311.13;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号